Future frame prediction in chest cine MR imaging using the PCA respiratory motion model and dynamically trained recurrent neural networks
- URL: http://arxiv.org/abs/2410.05882v1
- Date: Tue, 8 Oct 2024 10:21:43 GMT
- Title: Future frame prediction in chest cine MR imaging using the PCA respiratory motion model and dynamically trained recurrent neural networks
- Authors: Michel Pohl, Mitsuru Uesaka, Hiroyuki Takahashi, Kazuyuki Demachi, Ritu Bhusal Chhatkuli,
- Abstract summary: Lung radiotherapy treatment systems are subject to a latency that leads to uncertainty in the estimated tumor location and high irradiation of healthy tissue.
This work addresses future frame prediction in chest dynamic MRI sequences to compensate for that delay using RNNs trained with online learning algorithms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Lung radiotherapy treatment systems are subject to a latency that leads to uncertainty in the estimated tumor location and high irradiation of healthy tissue. This work addresses future frame prediction in chest dynamic MRI sequences to compensate for that delay using RNNs trained with online learning algorithms. The latter enable networks to mitigate irregular movements, as they update synaptic weights with each new training example. Experiments were conducted using four publicly available 2D thoracic cine-MRI sequences. PCA decomposes the time-varying deformation vector field (DVF), computed with the Lucas-Kanade optical flow algorithm, into static deformation fields and low-dimensional time-dependent weights. We compare various algorithms to forecast the latter: linear regression, least mean squares (LMS), and RNNs trained with real-time recurrent learning (RTRL), unbiased online recurrent optimization, decoupled neural interfaces and sparse 1-step approximation (SnAp-1). That enables estimating the future DVFs and, in turn, the next frames by warping the initial image. Linear regression led to the lowest mean DVF error at a horizon h = 0.32s (the time interval in advance for which the prediction is made), equal to 1.30mm, followed by SnAp-1 and RTRL, whose error increased from 1.37mm to 1.44mm as h increased from 0.62s to 2.20s. Similarly, the structural similarity index measure (SSIM) of LMS decreased from 0.904 to 0.898 as h increased from 0.31s to 1.57s and was the highest among the algorithms compared for the latter horizons. SnAp-1 attained the highest SSIM for h $\geq$ 1.88s, with values of less than 0.898. The predicted images look similar to the original ones, and the highest errors occurred at challenging areas such as the diaphragm boundary at the end-of-inhale phase, where motion variability is more prominent, and regions where out-of-plane motion was more prevalent.
Related papers
- Continuous sPatial-Temporal Deformable Image Registration (CPT-DIR) for motion modelling in radiotherapy: beyond classic voxel-based methods [10.17207334278678]
We propose an implicit neural representation (INR)-based approach modelling motion continuously in both space and time, named Continues-sPatial-Temporal DIR (CPT-DIR)
The DIR's performance was tested on the DIR-Lab dataset of 10 lung 4DCT cases, using metrics of landmark accuracy (TRE), contour conformity (Dice) and image similarity (MAE)
The proposed CPT-DIR can reduce landmark TRE from 2.79mm to 0.99mm, outperforming B-splines' results for all cases.
arXiv Detail & Related papers (2024-05-01T10:26:08Z) - Respiratory motion forecasting with online learning of recurrent neural
networks for safety enhancement in externally guided radiotherapy [0.0]
Real-time recurrent learning (RTRL) is a potential solution as it can learn patterns within non-stationary respiratory data but has high complexity.
This study assesses the capabilities of resource-efficient online RNN algorithms to forecast respiratory motion during radiotherapy treatment accurately.
arXiv Detail & Related papers (2024-03-03T20:16:16Z) - Neural Graphics Primitives-based Deformable Image Registration for
On-the-fly Motion Extraction [9.599774878892665]
Intra-fraction motion in radiotherapy is commonly modeled using deformable image registration (DIR)
Existing methods often struggle to balance speed and accuracy, limiting their applicability in clinical scenarios.
This study introduces a novel approach that harnesses Neural Graphics Primitives (NGP) to optimize the displacement vector field (DVF)
We validate this approach on the 4D-CT lung dataset DIR-lab, achieving a target registration error (TRE) of 1.15pm1.15 mm within a remarkable time of 1.77 seconds.
arXiv Detail & Related papers (2024-02-08T11:09:27Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
Unrolled neural networks have recently achieved state-of-the-art accelerated MRI reconstruction.
These networks unroll iterative optimization algorithms by alternating between physics-based consistency and neural-network based regularization.
We propose Greedy LEarning for Accelerated MRI reconstruction, an efficient training strategy for high-dimensional imaging settings.
arXiv Detail & Related papers (2022-07-18T06:01:29Z) - Prediction of the motion of chest internal points using a recurrent
neural network trained with real-time recurrent learning for latency
compensation in lung cancer radiotherapy [0.0]
We propose a method for recovering and predicting 3D tumor images from the tracked points and the initial tumor image.
The root-mean-square error, maximum error, and jitter corresponding to the RNN prediction on the test set were smaller than the same performance measures obtained with linear prediction and least mean squares (LMS)
The tumor position in the predicted images appears visually correct, which is confirmed by the high mean cross-correlation between the original and predicted images, equal to 0.955.
arXiv Detail & Related papers (2022-07-13T04:08:21Z) - Simultaneous boundary shape estimation and velocity field de-noising in
Magnetic Resonance Velocimetry using Physics-informed Neural Networks [70.7321040534471]
Magnetic resonance velocimetry (MRV) is a non-invasive technique widely used in medicine and engineering to measure the velocity field of a fluid.
Previous studies have required the shape of the boundary (for example, a blood vessel) to be known a priori.
We present a physics-informed neural network that instead uses the noisy MRV data alone to infer the most likely boundary shape and de-noised velocity field.
arXiv Detail & Related papers (2021-07-16T12:56:09Z) - Prediction of the Position of External Markers Using a Recurrent Neural
Network Trained With Unbiased Online Recurrent Optimization for Safe Lung
Cancer Radiotherapy [0.0]
During lung cancer radiotherapy, the position of infrared reflective objects on the chest can be recorded to estimate the tumor location.
Not taking this phenomenon into account may cause unwanted damage to healthy tissues and lead to side effects such as radiation pneumonitis.
We use nine observation records of the three-dimensional position of three external markers on the chest and abdomen of healthy individuals breathing during intervals from 73s to 222s.
We forecast the location of each marker simultaneously with a horizon value (the time interval in advance for which the prediction is made) between 0.1s and 2.0s, using a recurrent neural network (RNN)
arXiv Detail & Related papers (2021-06-02T12:07:31Z) - Pose-dependent weights and Domain Randomization for fully automatic
X-ray to CT Registration [51.280096834264256]
Fully automatic X-ray to CT registration requires an initial alignment within the capture range of existing intensity-based registrations.
This work provides a novel automatic initialization, which enables end to end registration.
The mean (+-standard deviation) target registration error in millimetres is 4.1 +- 4.3 for simulated X-rays with a success rate of 92% and 4.2 +- 3.9 for real X-rays with a success rate of 86.8%, where a success is defined as a translation error of less than 30mm.
arXiv Detail & Related papers (2020-11-14T12:50:32Z) - Appearance Learning for Image-based Motion Estimation in Tomography [60.980769164955454]
In tomographic imaging, anatomical structures are reconstructed by applying a pseudo-inverse forward model to acquired signals.
Patient motion corrupts the geometry alignment in the reconstruction process resulting in motion artifacts.
We propose an appearance learning approach recognizing the structures of rigid motion independently from the scanned object.
arXiv Detail & Related papers (2020-06-18T09:49:11Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.