Pyramidal Flow Matching for Efficient Video Generative Modeling
- URL: http://arxiv.org/abs/2410.05954v1
- Date: Tue, 8 Oct 2024 12:10:37 GMT
- Title: Pyramidal Flow Matching for Efficient Video Generative Modeling
- Authors: Yang Jin, Zhicheng Sun, Ningyuan Li, Kun Xu, Kun Xu, Hao Jiang, Nan Zhuang, Quzhe Huang, Yang Song, Yadong Mu, Zhouchen Lin,
- Abstract summary: This work introduces a unified pyramidal flow matching algorithm.
It sacrifices the original denoising trajectory as a series of pyramid stages, where only the final stage operates at the full resolution.
The entire framework can be optimized in an end-to-end manner and with a single unified Diffusion Transformer (DiT)
- Score: 67.03504440964564
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Video generation requires modeling a vast spatiotemporal space, which demands significant computational resources and data usage. To reduce the complexity, the prevailing approaches employ a cascaded architecture to avoid direct training with full resolution. Despite reducing computational demands, the separate optimization of each sub-stage hinders knowledge sharing and sacrifices flexibility. This work introduces a unified pyramidal flow matching algorithm. It reinterprets the original denoising trajectory as a series of pyramid stages, where only the final stage operates at the full resolution, thereby enabling more efficient video generative modeling. Through our sophisticated design, the flows of different pyramid stages can be interlinked to maintain continuity. Moreover, we craft autoregressive video generation with a temporal pyramid to compress the full-resolution history. The entire framework can be optimized in an end-to-end manner and with a single unified Diffusion Transformer (DiT). Extensive experiments demonstrate that our method supports generating high-quality 5-second (up to 10-second) videos at 768p resolution and 24 FPS within 20.7k A100 GPU training hours. All code and models will be open-sourced at https://pyramid-flow.github.io.
Related papers
- Depth Any Video with Scalable Synthetic Data [98.42356740981839]
We develop a scalable synthetic data pipeline, capturing real-time video depth data from diverse synthetic environments.
We leverage the powerful priors of generative video diffusion models to handle real-world videos effectively.
Our model outperforms all previous generative depth models in terms of spatial accuracy and temporal consistency.
arXiv Detail & Related papers (2024-10-14T17:59:46Z) - ViBiDSampler: Enhancing Video Interpolation Using Bidirectional Diffusion Sampler [53.98558445900626]
Current image-to-video diffusion models, while powerful in generating videos from a single frame, need adaptation for two-frame conditioned generation.
We introduce a novel, bidirectional sampling strategy to address these off-manifold issues without requiring extensive re-noising or fine-tuning.
Our method employs sequential sampling along both forward and backward paths, conditioned on the start and end frames, respectively, ensuring more coherent and on-manifold generation of intermediate frames.
arXiv Detail & Related papers (2024-10-08T03:01:54Z) - Hierarchical Patch Diffusion Models for High-Resolution Video Generation [50.42746357450949]
We develop deep context fusion, which propagates context information from low-scale to high-scale patches in a hierarchical manner.
We also propose adaptive computation, which allocates more network capacity and computation towards coarse image details.
The resulting model sets a new state-of-the-art FVD score of 66.32 and Inception Score of 87.68 in class-conditional video generation.
arXiv Detail & Related papers (2024-06-12T01:12:53Z) - RAVEN: Rethinking Adversarial Video Generation with Efficient Tri-plane Networks [93.18404922542702]
We present a novel video generative model designed to address long-term spatial and temporal dependencies.
Our approach incorporates a hybrid explicit-implicit tri-plane representation inspired by 3D-aware generative frameworks.
Our model synthesizes high-fidelity video clips at a resolution of $256times256$ pixels, with durations extending to more than $5$ seconds at a frame rate of 30 fps.
arXiv Detail & Related papers (2024-01-11T16:48:44Z) - FusionFrames: Efficient Architectural Aspects for Text-to-Video
Generation Pipeline [4.295130967329365]
This paper presents a new two-stage latent diffusion text-to-video generation architecture based on the text-to-image diffusion model.
The design of our model significantly reduces computational costs compared to other masked frame approaches.
We evaluate different configurations of MoVQ-based video decoding scheme to improve consistency and achieve higher PSNR, SSIM, MSE, and LPIPS scores.
arXiv Detail & Related papers (2023-11-22T00:26:15Z) - Video Probabilistic Diffusion Models in Projected Latent Space [75.4253202574722]
We propose a novel generative model for videos, coined projected latent video diffusion models (PVDM)
PVDM learns a video distribution in a low-dimensional latent space and thus can be efficiently trained with high-resolution videos under limited resources.
arXiv Detail & Related papers (2023-02-15T14:22:34Z) - Efficient End-to-End Video Question Answering with Pyramidal Multimodal
Transformer [13.71165050314854]
We present a new method for end-to-end Video Questioning (VideoQA)
We achieve this with a pyramidal multimodal transformer (PMT) model, which simply incorporates a learnable word embedding layer.
We demonstrate better or on-par performances with high computational efficiency against state-the-art methods on five VideoQA benchmarks.
arXiv Detail & Related papers (2023-02-04T09:14:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.