Meta-Learning with Heterogeneous Tasks
- URL: http://arxiv.org/abs/2410.18894v1
- Date: Thu, 24 Oct 2024 16:32:23 GMT
- Title: Meta-Learning with Heterogeneous Tasks
- Authors: Zhaofeng Si, Shu Hu, Kaiyi Ji, Siwei Lyu,
- Abstract summary: Heterogeneous Tasks Robust Meta-learning (HeTRoM)
An efficient iterative optimization algorithm based on bi-level optimization.
Results demonstrate that our method provides flexibility, enabling users to adapt to diverse task settings.
- Score: 42.695853959923625
- License:
- Abstract: Meta-learning is a general approach to equip machine learning models with the ability to handle few-shot scenarios when dealing with many tasks. Most existing meta-learning methods work based on the assumption that all tasks are of equal importance. However, real-world applications often present heterogeneous tasks characterized by varying difficulty levels, noise in training samples, or being distinctively different from most other tasks. In this paper, we introduce a novel meta-learning method designed to effectively manage such heterogeneous tasks by employing rank-based task-level learning objectives, Heterogeneous Tasks Robust Meta-learning (HeTRoM). HeTRoM is proficient in handling heterogeneous tasks, and it prevents easy tasks from overwhelming the meta-learner. The approach allows for an efficient iterative optimization algorithm based on bi-level optimization, which is then improved by integrating statistical guidance. Our experimental results demonstrate that our method provides flexibility, enabling users to adapt to diverse task settings and enhancing the meta-learner's overall performance.
Related papers
- Towards Task Sampler Learning for Meta-Learning [37.02030832662183]
Meta-learning aims to learn general knowledge with diverse training tasks conducted from limited data, and then transfer it to new tasks.
It is commonly believed that increasing task diversity will enhance the generalization ability of meta-learning models.
This paper challenges this view through empirical and theoretical analysis.
arXiv Detail & Related papers (2023-07-18T01:53:18Z) - MetaModulation: Learning Variational Feature Hierarchies for Few-Shot
Learning with Fewer Tasks [63.016244188951696]
We propose a method for few-shot learning with fewer tasks, which is by metaulation.
We modify parameters at various batch levels to increase the meta-training tasks.
We also introduce learning variational feature hierarchies by incorporating the variationalulation.
arXiv Detail & Related papers (2023-05-17T15:47:47Z) - On the Effectiveness of Fine-tuning Versus Meta-reinforcement Learning [71.55412580325743]
We show that multi-task pretraining with fine-tuning on new tasks performs equally as well, or better, than meta-pretraining with meta test-time adaptation.
This is encouraging for future research, as multi-task pretraining tends to be simpler and computationally cheaper than meta-RL.
arXiv Detail & Related papers (2022-06-07T13:24:00Z) - The Effect of Diversity in Meta-Learning [79.56118674435844]
Few-shot learning aims to learn representations that can tackle novel tasks given a small number of examples.
Recent studies show that task distribution plays a vital role in the model's performance.
We study different task distributions on a myriad of models and datasets to evaluate the effect of task diversity on meta-learning algorithms.
arXiv Detail & Related papers (2022-01-27T19:39:07Z) - Meta-Learning with Fewer Tasks through Task Interpolation [67.03769747726666]
Current meta-learning algorithms require a large number of meta-training tasks, which may not be accessible in real-world scenarios.
By meta-learning with task gradient (MLTI), our approach effectively generates additional tasks by randomly sampling a pair of tasks and interpolating the corresponding features and labels.
Empirically, in our experiments on eight datasets from diverse domains, we find that the proposed general MLTI framework is compatible with representative meta-learning algorithms and consistently outperforms other state-of-the-art strategies.
arXiv Detail & Related papers (2021-06-04T20:15:34Z) - Adaptive Task Sampling for Meta-Learning [79.61146834134459]
Key idea of meta-learning for few-shot classification is to mimic the few-shot situations faced at test time.
We propose an adaptive task sampling method to improve the generalization performance.
arXiv Detail & Related papers (2020-07-17T03:15:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.