QT-DoG: Quantization-aware Training for Domain Generalization
- URL: http://arxiv.org/abs/2410.06020v2
- Date: Fri, 27 Jun 2025 01:42:45 GMT
- Title: QT-DoG: Quantization-aware Training for Domain Generalization
- Authors: Saqib Javed, Hieu Le, Mathieu Salzmann,
- Abstract summary: We propose Quantization-aware Training for Domain Generalization (QT-DoG)<n>We demonstrate that weight quantization effectively leads to flatter minima in the loss landscape.<n> QT-DoG exploits quantization as an implicit regularizer by inducing noise in model weights.
- Score: 58.439816306817306
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A key challenge in Domain Generalization (DG) is preventing overfitting to source domains, which can be mitigated by finding flatter minima in the loss landscape. In this work, we propose Quantization-aware Training for Domain Generalization (QT-DoG) and demonstrate that weight quantization effectively leads to flatter minima in the loss landscape, thereby enhancing domain generalization. Unlike traditional quantization methods focused on model compression, QT-DoG exploits quantization as an implicit regularizer by inducing noise in model weights, guiding the optimization process toward flatter minima that are less sensitive to perturbations and overfitting. We provide both an analytical perspective and empirical evidence demonstrating that quantization inherently encourages flatter minima, leading to better generalization across domains. Moreover, with the benefit of reducing the model size through quantization, we demonstrate that an ensemble of multiple quantized models further yields superior accuracy than the state-of-the-art DG approaches with no computational or memory overheads. Code is released at: https://saqibjaved1.github.io/QT_DoG/.
Related papers
- FIMA-Q: Post-Training Quantization for Vision Transformers by Fisher Information Matrix Approximation [55.12070409045766]
Post-training quantization (PTQ) has stood out as a cost-effective and promising model compression paradigm in recent years.<n>Current PTQ methods for Vision Transformers (ViTs) still suffer from significant accuracy degradation, especially under low-bit quantization.
arXiv Detail & Related papers (2025-06-13T07:57:38Z) - Oscillations Make Neural Networks Robust to Quantization [0.16385815610837165]
We show that oscillations in Quantization Aware Training (QAT) are undesirable artifacts caused by the Straight-Through Estimator (STE)<n>We propose a novel regularization method that induces oscillations to improve quantization.
arXiv Detail & Related papers (2025-02-01T16:39:58Z) - Mixed-Precision Graph Neural Quantization for Low Bit Large Language Models [13.709080134204326]
Post-Training Quantization (PTQ) is pivotal for deploying large language models within resource-limited settings.
We introduce a Mixed-precision Graph Neural PTQ (MG-PTQ) approach, employing a graph neural network (GNN) module to capture dependencies among weights.
Our method more effectively captures dependencies among target weights, leading to a more accurate assessment of weight importance.
arXiv Detail & Related papers (2025-01-30T05:39:01Z) - GAQAT: gradient-adaptive quantization-aware training for domain generalization [54.31450550793485]
We propose a novel Gradient-Adaptive Quantization-Aware Training (GAQAT) framework for DG.
Our approach begins by identifying the scale-gradient conflict problem in low-precision quantization.
Extensive experiments validate the effectiveness of the proposed GAQAT framework.
arXiv Detail & Related papers (2024-12-07T06:07:21Z) - Pushing the Limits of Large Language Model Quantization via the Linearity Theorem [71.3332971315821]
We present a "line theoremarity" establishing a direct relationship between the layer-wise $ell$ reconstruction error and the model perplexity increase due to quantization.
This insight enables two novel applications: (1) a simple data-free LLM quantization method using Hadamard rotations and MSE-optimal grids, dubbed HIGGS, and (2) an optimal solution to the problem of finding non-uniform per-layer quantization levels.
arXiv Detail & Related papers (2024-11-26T15:35:44Z) - Compensate Quantization Errors+: Quantized Models Are Inquisitive Learners [51.32182730502002]
We introduce Singular-value Diagonal Expansion to refine weight distributions to achieve better quantization alignment.<n>Our plug-and-play weight-quantization methods demonstrate substantial performance improvements over state-of-the-art approaches.
arXiv Detail & Related papers (2024-07-22T09:45:16Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - Zero-Shot Sharpness-Aware Quantization for Pre-trained Language Models [88.80146574509195]
Quantization is a promising approach for reducing memory overhead and accelerating inference.
We propose a novel-aware quantization (ZSAQ) framework for the zero-shot quantization of various PLMs.
arXiv Detail & Related papers (2023-10-20T07:09:56Z) - Quantize Once, Train Fast: Allreduce-Compatible Compression with Provable Guarantees [53.950234267704]
We introduce Global-QSGD, an All-reduce gradient-compatible quantization method.<n>We show that it accelerates distributed training by up to 3.51% over baseline quantization methods.
arXiv Detail & Related papers (2023-05-29T21:32:15Z) - Learning Gradient-based Mixup towards Flatter Minima for Domain
Generalization [44.04047359057987]
We develop a new domain generalization algorithm named Flatness-aware Gradient-based Mixup (FGMix)
FGMix learns the similarity function towards flatter minima for better generalization.
On the DomainBed benchmark, we validate the efficacy of various designs of FGMix and demonstrate its superiority over other DG algorithms.
arXiv Detail & Related papers (2022-09-29T13:01:14Z) - On Balancing Bias and Variance in Unsupervised Multi-Source-Free Domain
Adaptation [6.2200089460762085]
Methods for multi-source-free domain adaptation (MSFDA) typically train a target model using pseudo-labeled data produced by the source models.
We develop an information-theoretic bound on the generalization error of the resulting target model.
We then provide insights on how to balance this trade-off from three perspectives, including domain aggregation, selective pseudo-labeling, and joint feature alignment.
arXiv Detail & Related papers (2022-02-01T22:34:18Z) - Towards Principled Disentanglement for Domain Generalization [90.9891372499545]
A fundamental challenge for machine learning models is generalizing to out-of-distribution (OOD) data.
We first formalize the OOD generalization problem as constrained optimization, called Disentanglement-constrained Domain Generalization (DDG)
Based on the transformation, we propose a primal-dual algorithm for joint representation disentanglement and domain generalization.
arXiv Detail & Related papers (2021-11-27T07:36:32Z) - Zero-shot Adversarial Quantization [11.722728148523366]
We propose a zero-shot adversarial quantization (ZAQ) framework, facilitating effective discrepancy estimation and knowledge transfer.
This is achieved by a novel two-level discrepancy modeling to drive a generator to synthesize informative and diverse data examples.
We conduct extensive experiments on three fundamental vision tasks, demonstrating the superiority of ZAQ over the strong zero-shot baselines.
arXiv Detail & Related papers (2021-03-29T01:33:34Z) - AUSN: Approximately Uniform Quantization by Adaptively Superimposing
Non-uniform Distribution for Deep Neural Networks [0.7378164273177589]
Existing uniform and non-uniform quantization methods exhibit an inherent conflict between the representing range and representing resolution.
We propose a novel quantization method to quantize the weight and activation.
The key idea is to Approximate the Uniform quantization by Adaptively Superposing multiple Non-uniform quantized values, namely AUSN.
arXiv Detail & Related papers (2020-07-08T05:10:53Z) - Gradient $\ell_1$ Regularization for Quantization Robustness [70.39776106458858]
We derive a simple regularization scheme that improves robustness against post-training quantization.
By training quantization-ready networks, our approach enables storing a single set of weights that can be quantized on-demand to different bit-widths.
arXiv Detail & Related papers (2020-02-18T12:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.