GAQAT: gradient-adaptive quantization-aware training for domain generalization
- URL: http://arxiv.org/abs/2412.05551v1
- Date: Sat, 07 Dec 2024 06:07:21 GMT
- Title: GAQAT: gradient-adaptive quantization-aware training for domain generalization
- Authors: Jiacheng Jiang, Yuan Meng, Chen Tang, Han Yu, Qun Li, Zhi Wang, Wenwu Zhu,
- Abstract summary: We propose a novel Gradient-Adaptive Quantization-Aware Training (GAQAT) framework for DG.
Our approach begins by identifying the scale-gradient conflict problem in low-precision quantization.
Extensive experiments validate the effectiveness of the proposed GAQAT framework.
- Score: 54.31450550793485
- License:
- Abstract: Research on loss surface geometry, such as Sharpness-Aware Minimization (SAM), shows that flatter minima improve generalization. Recent studies further reveal that flatter minima can also reduce the domain generalization (DG) gap. However, existing flatness-based DG techniques predominantly operate within a full-precision training process, which is impractical for deployment on resource-constrained edge devices that typically rely on lower bit-width representations (e.g., 4 bits, 3 bits). Consequently, low-precision quantization-aware training is critical for optimizing these techniques in real-world applications. In this paper, we observe a significant degradation in performance when applying state-of-the-art DG-SAM methods to quantized models, suggesting that current approaches fail to preserve generalizability during the low-precision training process. To address this limitation, we propose a novel Gradient-Adaptive Quantization-Aware Training (GAQAT) framework for DG. Our approach begins by identifying the scale-gradient conflict problem in low-precision quantization, where the task loss and smoothness loss induce conflicting gradients for the scaling factors of quantizers, with certain layers exhibiting opposing gradient directions. This conflict renders the optimization of quantized weights highly unstable. To mitigate this, we further introduce a mechanism to quantify gradient inconsistencies and selectively freeze the gradients of scaling factors, thereby stabilizing the training process and enhancing out-of-domain generalization. Extensive experiments validate the effectiveness of the proposed GAQAT framework. On PACS, our 3-bit and 4-bit models outperform direct DG-QAT integration by up to 4.5%. On DomainNet, the 4-bit model achieves near-lossless performance compared to full precision, with improvements of 1.39% (4-bit) and 1.06% (3-bit) over the SOTA QAT baseline.
Related papers
- QT-DoG: Quantization-aware Training for Domain Generalization [58.439816306817306]
We propose Quantization-aware Training for Domain Generalization (QT-DoG)
QT-DoG exploits quantization as an implicit regularizer by inducing noise in model weights.
We demonstrate that QT-DoG generalizes across various datasets, architectures, and quantization algorithms.
arXiv Detail & Related papers (2024-10-08T13:21:48Z) - Taming 3DGS: High-Quality Radiance Fields with Limited Resources [50.92437599516609]
3D Gaussian Splatting (3DGS) has transformed novel-view synthesis with its fast, interpretable, and high-fidelity rendering.
We tackle the challenges of training and rendering 3DGS models on a budget.
We derive faster, numerically equivalent solutions for gradient computation and attribute updates.
arXiv Detail & Related papers (2024-06-21T20:44:23Z) - Gradient-based Automatic Mixed Precision Quantization for Neural Networks On-Chip [0.9187138676564589]
We present High Granularity Quantization (HGQ), an innovative quantization-aware training method.
HGQ fine-tune the per-weight and per-activation precision by making them optimizable through gradient descent.
This approach enables ultra-low latency and low power neural networks on hardware capable of performing arithmetic operations.
arXiv Detail & Related papers (2024-05-01T17:18:46Z) - Zero-Shot Sharpness-Aware Quantization for Pre-trained Language Models [88.80146574509195]
Quantization is a promising approach for reducing memory overhead and accelerating inference.
We propose a novel-aware quantization (ZSAQ) framework for the zero-shot quantization of various PLMs.
arXiv Detail & Related papers (2023-10-20T07:09:56Z) - Neural Networks with Quantization Constraints [111.42313650830248]
We present a constrained learning approach to quantization training.
We show that the resulting problem is strongly dual and does away with gradient estimations.
We demonstrate that the proposed approach exhibits competitive performance in image classification tasks.
arXiv Detail & Related papers (2022-10-27T17:12:48Z) - SQuAT: Sharpness- and Quantization-Aware Training for BERT [43.049102196902844]
We propose sharpness- and quantization-aware training (SQuAT)
Our method can consistently outperform state-of-the-art quantized BERT models under 2, 3, and 4-bit settings by 1%.
Our experiments on empirical measurement of sharpness also suggest that our method would lead to flatter minima compared to other quantization methods.
arXiv Detail & Related papers (2022-10-13T16:52:19Z) - LG-LSQ: Learned Gradient Linear Symmetric Quantization [3.6816597150770387]
Deep neural networks with lower precision weights have advantages in terms of the cost of memory space and accelerator power.
The main challenge associated with the quantization algorithm is maintaining accuracy at low bit-widths.
We propose learned gradient linear symmetric quantization (LG-LSQ) as a method for quantizing weights and activation functions to low bit-widths.
arXiv Detail & Related papers (2022-02-18T03:38:12Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.