Observation of Higgs and Goldstone modes in U(1) symmetry-broken Rydberg atomic systems
- URL: http://arxiv.org/abs/2410.06047v1
- Date: Tue, 8 Oct 2024 13:45:59 GMT
- Title: Observation of Higgs and Goldstone modes in U(1) symmetry-broken Rydberg atomic systems
- Authors: Bang Liu, Li-Hua Zhang, Ya-Jun Wang, Jun Zhang, Qi-Feng Wang, Yu Ma, Tian-Yu Han, Zheng-Yuan Zhang, Shi-Yao Shao, Qing Li, Han-Chao Chen, Jia-Dou Nan, Dong-Yang Zhu, Yi-Ming Yin, Bao-Sen Shi, Dong-Sheng Ding,
- Abstract summary: We report an experimental signature of Higgs and Goldstone modes in a U(1) symmetry-broken Rydberg atomic gases.
By constructing two probe fields to excite atoms, we observe the distinct phase and amplitude fluctuations of Rydberg atoms collective excitations.
- Score: 23.439762818503013
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Higgs and Goldstone modes manifest as fluctuations in the order parameter of system, offering insights into its phase transitions and symmetry properties. Exploring the dynamics of these collective excitations in a Rydberg atoms system advances various branches of condensed matter, particle physics, and cosmology. Here, we report an experimental signature of Higgs and Goldstone modes in a U(1) symmetry-broken Rydberg atomic gases. By constructing two probe fields to excite atoms, we observe the distinct phase and amplitude fluctuations of Rydberg atoms collective excitations under the particle-hole symmetry. Due to the van der Waals interactions between the Rydberg atoms, we detect a symmetric variance spectrum divided by the divergent regime and phase boundary, capturing the full dynamics of the additional Higgs and Goldstone modes. Studying the Higgs and Goldstone modes in Rydberg atoms allows us to explore fundamental aspects of quantum phase transitions and symmetry breaking phenomena, while leveraging the unique properties of these highly interacting systems to uncover new physics and potential applications in quantum simulation.
Related papers
- Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - Spin- and Momentum-Correlated Atom Pairs Mediated by Photon Exchange and
Seeded by Vacuum Fluctuations [0.0]
We experimentally demonstrate a mechanism for generating pairs of atoms in well-defined spin and momentum modes.
We observe a collectively enhanced production of pairs and probe interspin correlations in momentum space.
Our results offer promising prospects for quantum-enhanced interferometry and quantum simulation experiments.
arXiv Detail & Related papers (2023-03-20T17:59:03Z) - Landau-Forbidden Quantum Criticality in Rydberg Quantum Simulators [0.0]
We study the ground state phase diagram of a one-dimensional array of individually trapped neutral atoms interacting strongly via Rydberg states.
We show how an enlarged, emergent continuous symmetry arises at the DQCs, which can be experimentally observed in the joint distribution of two distinct order parameters.
arXiv Detail & Related papers (2022-07-18T18:00:00Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Anderson localization of a Rydberg electron [68.8204255655161]
Rydberg atoms inherit their level structure, symmetries, and scaling behavior from the hydrogen atom.
limit is reached by simultaneously increasing the number of ground state atoms and the level of excitation of the Rydberg atom.
arXiv Detail & Related papers (2021-11-19T18:01:24Z) - Dynamics of atoms within atoms [0.0]
We study the quantum-many-body dynamics of atoms moving within the Rydberg atom.
Our simulations focus in particular on the scenario of multiple sequential Rydberg excitations on the same Rubidium condensate.
arXiv Detail & Related papers (2021-11-09T10:16:49Z) - Electric circuit emulation of topological transitions driven by quantum
statistics [0.0]
We predict the topological transition in the two-particle interacting system driven by the particles' quantum statistics.
As a toy model, we investigate an extended one-dimensional Hubbard model with two anyonic excitations obeying fractional quantum statistics.
We develop a rigorous method to emulate the eigenmodes and eigenenergies of anyon pairs with resonant electric circuits.
arXiv Detail & Related papers (2021-08-23T22:34:52Z) - Cavity QED with Quantum Gases: New Paradigms in Many-Body Physics [0.0]
We review the recent developments and the current status in the field of quantum-gas cavity QED.
Composite quantum-gas--cavity systems offer the opportunity to implement, simulate, and experimentally test fundamental solid-state Hamiltonians.
arXiv Detail & Related papers (2021-02-08T19:00:03Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.