Hierarchical Matrix Completion for the Prediction of Properties of Binary Mixtures
- URL: http://arxiv.org/abs/2410.06060v1
- Date: Tue, 8 Oct 2024 14:04:30 GMT
- Title: Hierarchical Matrix Completion for the Prediction of Properties of Binary Mixtures
- Authors: Dominik Gond, Jan-Tobias Sohns, Heike Leitte, Hans Hasse, Fabian Jirasek,
- Abstract summary: We introduce a novel generic approach for improving data-driven models.
We lump components that behave similarly into chemical classes and model them jointly.
Using clustering leads to significantly improved predictions compared to an MCM without clustering.
- Score: 3.0478550046333965
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting the thermodynamic properties of mixtures is crucial for process design and optimization in chemical engineering. Machine learning (ML) methods are gaining increasing attention in this field, but experimental data for training are often scarce, which hampers their application. In this work, we introduce a novel generic approach for improving data-driven models: inspired by the ancient rule "similia similibus solvuntur", we lump components that behave similarly into chemical classes and model them jointly in the first step of a hierarchical approach. While the information on class affiliations can stem in principle from any source, we demonstrate how classes can reproducibly be defined based on mixture data alone by agglomerative clustering. The information from this clustering step is then used as an informed prior for fitting the individual data. We demonstrate the benefits of this approach by applying it in connection with a matrix completion method (MCM) for predicting isothermal activity coefficients at infinite dilution in binary mixtures. Using clustering leads to significantly improved predictions compared to an MCM without clustering. Furthermore, the chemical classes learned from the clustering give exciting insights into what matters on the molecular level for modeling given mixture properties.
Related papers
- Balancing Molecular Information and Empirical Data in the Prediction of Physico-Chemical Properties [8.649679686652648]
We propose a general method for combining molecular descriptors with representation learning.
The proposed hybrid model exploits chemical structure information using graph neural networks.
It automatically detects cases where structure-based predictions are unreliable, in which case it corrects them by representation-learning based predictions.
arXiv Detail & Related papers (2024-06-12T10:51:00Z) - Adaptive Fuzzy C-Means with Graph Embedding [84.47075244116782]
Fuzzy clustering algorithms can be roughly categorized into two main groups: Fuzzy C-Means (FCM) based methods and mixture model based methods.
We propose a novel FCM based clustering model that is capable of automatically learning an appropriate membership degree hyper- parameter value.
arXiv Detail & Related papers (2024-05-22T08:15:50Z) - Dendrogram of mixing measures: Hierarchical clustering and model
selection for finite mixture models [5.044813181406083]
We present a new way to summarize and select mixture models via the hierarchical clustering tree (dendrogram) constructed from an overfitted latent mixing measure.
Our proposed method bridges agglomerative hierarchical clustering and mixture modeling.
arXiv Detail & Related papers (2024-03-04T02:31:53Z) - Mixed Models with Multiple Instance Learning [51.440557223100164]
We introduce MixMIL, a framework integrating Generalized Linear Mixed Models (GLMM) and Multiple Instance Learning (MIL)
Our empirical results reveal that MixMIL outperforms existing MIL models in single-cell datasets.
arXiv Detail & Related papers (2023-11-04T16:42:42Z) - Unsupervised Learning of Molecular Embeddings for Enhanced Clustering
and Emergent Properties for Chemical Compounds [2.6803933204362336]
We introduce various methods to detect and cluster chemical compounds based on their SMILES data.
Our first method, analyzing the graphical structures of chemical compounds using embedding data, employs vector search to meet our threshold value.
We also used natural language description embeddings stored in a vector database with GPT3.5, which outperforms the base model.
arXiv Detail & Related papers (2023-10-25T18:00:24Z) - Learning Gaussian Mixtures with Generalised Linear Models: Precise
Asymptotics in High-dimensions [79.35722941720734]
Generalised linear models for multi-class classification problems are one of the fundamental building blocks of modern machine learning tasks.
We prove exacts characterising the estimator in high-dimensions via empirical risk minimisation.
We discuss how our theory can be applied beyond the scope of synthetic data.
arXiv Detail & Related papers (2021-06-07T16:53:56Z) - CASTELO: Clustered Atom Subtypes aidEd Lead Optimization -- a combined
machine learning and molecular modeling method [2.8381402107366034]
We propose a combined machine learning and molecular modeling approach that automates lead optimization workflow.
Our method provides new hints for drug modification hotspots which can be used to improve drug efficacy.
arXiv Detail & Related papers (2020-11-27T15:41:00Z) - Kernel learning approaches for summarising and combining posterior
similarity matrices [68.8204255655161]
We build upon the notion of the posterior similarity matrix (PSM) in order to suggest new approaches for summarising the output of MCMC algorithms for Bayesian clustering models.
A key contribution of our work is the observation that PSMs are positive semi-definite, and hence can be used to define probabilistically-motivated kernel matrices.
arXiv Detail & Related papers (2020-09-27T14:16:14Z) - Repulsive Mixture Models of Exponential Family PCA for Clustering [127.90219303669006]
The mixture extension of exponential family principal component analysis ( EPCA) was designed to encode much more structural information about data distribution than the traditional EPCA.
The traditional mixture of local EPCAs has the problem of model redundancy, i.e., overlaps among mixing components, which may cause ambiguity for data clustering.
In this paper, a repulsiveness-encouraging prior is introduced among mixing components and a diversified EPCA mixture (DEPCAM) model is developed in the Bayesian framework.
arXiv Detail & Related papers (2020-04-07T04:07:29Z) - Clustering Binary Data by Application of Combinatorial Optimization
Heuristics [52.77024349608834]
We study clustering methods for binary data, first defining aggregation criteria that measure the compactness of clusters.
Five new and original methods are introduced, using neighborhoods and population behavior optimization metaheuristics.
From a set of 16 data tables generated by a quasi-Monte Carlo experiment, a comparison is performed for one of the aggregations using L1 dissimilarity, with hierarchical clustering, and a version of k-means: partitioning around medoids or PAM.
arXiv Detail & Related papers (2020-01-06T23:33:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.