Listening to Patients: A Framework of Detecting and Mitigating Patient Misreport for Medical Dialogue Generation
- URL: http://arxiv.org/abs/2410.06094v2
- Date: Tue, 24 Dec 2024 09:46:41 GMT
- Title: Listening to Patients: A Framework of Detecting and Mitigating Patient Misreport for Medical Dialogue Generation
- Authors: Lang Qin, Yao Zhang, Hongru Liang, Adam Jatowt, Zhenglu Yang,
- Abstract summary: We argue that Medical Dialogue Systems should ''listen to patients'' and tackle two key challenges: how to detect and mitigate patient misreport effectively.
We propose PaMis, a framework of detecting and mitigating Patient Misreport for medical dialogue generation.
- Score: 31.466180762584635
- License:
- Abstract: Medical Dialogue Systems aim to provide automated healthcare support through patient-agent conversations. Previous efforts typically regard patients as ideal users -- one who accurately and consistently reports their health conditions. However, in reality, patients often misreport their symptoms, leading to discrepancies between their reports and actual health conditions. Overlooking patient misreport will affect the quality of healthcare consultations provided by MDS. To address this issue, we argue that MDS should ''listen to patients'' and tackle two key challenges: how to detect and mitigate patient misreport effectively. In this work, we propose PaMis, a framework of detecting and mitigating Patient Misreport for medical dialogue generation. PaMis first constructs dialogue entity graphs, then detects patient misreport based on graph entropy, and mitigates patient misreport by formulating clarifying questions. Experiments indicate that PaMis effectively enhances medical response generation, enabling models like GPT-4 to detect and mitigate patient misreports, and provide high-quality healthcare assistance.
Related papers
- The doctor will polygraph you now: ethical concerns with AI for fact-checking patients [0.23248585800296404]
Artificial intelligence (AI) methods have been proposed for the prediction of social behaviors.
This raises novel ethical concerns about respect, privacy, and control over patient data.
arXiv Detail & Related papers (2024-08-15T02:55:30Z) - MedInsight: A Multi-Source Context Augmentation Framework for Generating
Patient-Centric Medical Responses using Large Language Models [3.0874677990361246]
Large Language Models (LLMs) have shown impressive capabilities in generating human-like responses.
We propose MedInsight:a novel retrieval framework that augments LLM inputs with relevant background information.
Experiments on the MTSamples dataset validate MedInsight's effectiveness in generating contextually appropriate medical responses.
arXiv Detail & Related papers (2024-03-13T15:20:30Z) - Are Generative AI systems Capable of Supporting Information Needs of
Patients? [4.485098382568721]
We investigate whether and how generative visual question answering systems can responsibly support patient information needs in the context of radiology imaging data.
We conducted a formative need-finding study in which participants discussed chest computed tomography (CT) scans and associated radiology reports of a fictitious close relative with a cardiothoracic radiologist.
Using thematic analysis of the conversation between participants and medical experts, we identified commonly occurring themes across interactions.
We evaluate two state-of-the-art generative visual language models against the radiologist's responses.
arXiv Detail & Related papers (2024-01-31T23:24:37Z) - Yes, this is what I was looking for! Towards Multi-modal Medical
Consultation Concern Summary Generation [46.42604861624895]
We propose a new task of multi-modal medical concern summary generation.
Nonverbal cues, such as patients' gestures and facial expressions, aid in accurately identifying patients' concerns.
We construct the first multi-modal medical concern summary generation corpus.
arXiv Detail & Related papers (2024-01-10T12:56:47Z) - MedNgage: A Dataset for Understanding Engagement in Patient-Nurse
Conversations [4.847266237348932]
Patients who effectively manage their symptoms often demonstrate higher levels of engagement in conversations and interventions with healthcare practitioners.
It is crucial for AI systems to understand the engagement in natural conversations between patients and practitioners to better contribute toward patient care.
We present a novel dataset (MedNgage) which consists of patient-nurse conversations about cancer symptom management.
arXiv Detail & Related papers (2023-05-31T16:06:07Z) - Generating medically-accurate summaries of patient-provider dialogue: A
multi-stage approach using large language models [6.252236971703546]
An effective summary is required to be coherent and accurately capture all the medically relevant information in the dialogue.
This paper tackles the problem of medical conversation summarization by discretizing the task into several smaller dialogue-understanding tasks.
arXiv Detail & Related papers (2023-05-10T08:48:53Z) - A Benchmark for Automatic Medical Consultation System: Frameworks, Tasks
and Datasets [70.32630628211803]
We propose two frameworks to support automatic medical consultation, namely doctor-patient dialogue understanding and task-oriented interaction.
A new large medical dialogue dataset with multi-level fine-grained annotations is introduced.
We report a set of benchmark results for each task, which shows the usability of the dataset and sets a baseline for future studies.
arXiv Detail & Related papers (2022-04-19T16:43:21Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
We propose an end-to-end robust Transformer-based solution, Mutual Integration of patient journey and Medical Ontology (MIMO) for healthcare representation learning and predictive analytics.
arXiv Detail & Related papers (2021-07-20T07:04:52Z) - Semi-Supervised Variational Reasoning for Medical Dialogue Generation [70.838542865384]
Two key characteristics are relevant for medical dialogue generation: patient states and physician actions.
We propose an end-to-end variational reasoning approach to medical dialogue generation.
A physician policy network composed of an action-classifier and two reasoning detectors is proposed for augmented reasoning ability.
arXiv Detail & Related papers (2021-05-13T04:14:35Z) - MedDG: An Entity-Centric Medical Consultation Dataset for Entity-Aware
Medical Dialogue Generation [86.38736781043109]
We build and release a large-scale high-quality Medical Dialogue dataset related to 12 types of common Gastrointestinal diseases named MedDG.
We propose two kinds of medical dialogue tasks based on MedDG dataset. One is the next entity prediction and the other is the doctor response generation.
Experimental results show that the pre-train language models and other baselines struggle on both tasks with poor performance in our dataset.
arXiv Detail & Related papers (2020-10-15T03:34:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.