論文の概要: Decoding Decoded: Understanding Hyperparameter Effects in Open-Ended Text Generation
- arxiv url: http://arxiv.org/abs/2410.06097v1
- Date: Tue, 8 Oct 2024 14:51:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 11:10:50.656221
- Title: Decoding Decoded: Understanding Hyperparameter Effects in Open-Ended Text Generation
- Title(参考訳): 復号化デコード:オープンエンディングテキスト生成におけるハイパーパラメータ効果の理解
- Authors: Esteban Garces Arias, Meimingwei Li, Christian Heumann, Matthias Aßenmacher,
- Abstract要約: 大規模言語モデル(LLM)の復号戦略は、テキスト生成タスクの重要な側面であるが、しばしば未探索の側面である。
オープンエンドテキスト生成において,ハイパーパラメータ選択がテキスト品質に与える影響を,大規模かつ包括的に分析する。
- 参考スコア(独自算出の注目度): 0.22499166814992438
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decoding strategies for large language models (LLMs) are a critical but often underexplored aspect of text generation tasks. Since LLMs produce probability distributions over the entire vocabulary, various decoding methods have been developed to transform these probabilities into coherent and fluent text, each with its own set of hyperparameters. In this study, we present a large-scale, comprehensive analysis of how hyperparameter selection affects text quality in open-ended text generation across multiple LLMs, datasets, and evaluation metrics. Through an extensive sensitivity analysis, we provide practical guidelines for hyperparameter tuning and demonstrate the substantial influence of these choices on text quality. Using three established datasets, spanning factual domains (e.g., news) and creative domains (e.g., fiction), we show that hyperparameter tuning significantly impacts generation quality, though its effects vary across models and tasks. We offer in-depth insights into these effects, supported by both human evaluations and a synthesis of widely-used automatic evaluation metrics.
- Abstract(参考訳): 大規模言語モデル(LLM)の復号戦略は、テキスト生成タスクの重要な側面であるが、しばしば未探索の側面である。
LLMは語彙全体の確率分布を生成するため、これらの確率をコヒーレントで流動的なテキストに変換するための様々な復号法が開発されている。
本研究では,複数のLCM,データセット,評価指標を用いたオープンエンドテキスト生成において,ハイパーパラメータ選択がテキスト品質に与える影響を大規模かつ包括的に分析する。
広義の感度解析を通じて、ハイパーパラメータチューニングの実践的ガイドラインを提供し、これらの選択がテキスト品質に与える影響を実証する。
現実の領域(ニュースなど)と創造的な領域(フィクションなど)にまたがる3つの確立されたデータセットを用いて、ハイパーパラメータチューニングが生成品質に大きな影響を及ぼすが、その効果はモデルやタスクによって異なる。
人的評価と広く使用されている自動評価指標の合成の両方によって支援された、これらの効果に関する詳細な知見を提供する。
関連論文リスト
- Detecting Machine-Generated Long-Form Content with Latent-Space Variables [54.07946647012579]
既存のゼロショット検出器は主に、現実世界のドメインシフトに弱いトークンレベルの分布に焦点を当てている。
本稿では,イベント遷移などの抽象的要素を機械対人文検出の鍵となる要因として組み込んだ,より堅牢な手法を提案する。
論文 参考訳(メタデータ) (2024-10-04T18:42:09Z) - SMLT-MUGC: Small, Medium, and Large Texts -- Machine versus User-Generated Content Detection and Comparison [2.7147912878168303]
我々は,(1)小規模(選挙,FIFA,ゲーム・オブ・スローンズからのツイート),(2)媒体(Wikipedia導入,PubMed要約),(3)大規模(OpenAI Webテキストデータセット)の4つのデータセットにおける機械学習アルゴリズムの性能を比較した。
その結果,非常に大きなパラメータを持つLCM(例えば1542万パラメータを持つGPT2のXL-1542変種など)は,従来の機械学習手法による検出が困難であることが示唆された。
言語学,人格,感情,偏見,道徳など,多次元にわたる人文・機械文の特徴について検討する。
論文 参考訳(メタデータ) (2024-06-28T22:19:01Z) - LLM can Achieve Self-Regulation via Hyperparameter Aware Generation [88.69052513433603]
大規模言語モデル (LLM) は、生成されたテキストを制御するために様々な復号法を用いる。
LLMはこれらのデコード戦略の存在を意識し、自己統制できるのか?
ハイパーパラメータ・アウェア・ジェネレーション(HAG)と呼ばれる新しいテキスト生成パラダイムを提案する。
論文 参考訳(メタデータ) (2024-02-17T11:18:22Z) - A Thorough Examination of Decoding Methods in the Era of LLMs [72.65956436513241]
復号法は、次世代の予測器から実用的なタスク解決器に言語モデルを変換する上で、必須の役割を果たす。
本稿では,大規模言語モデルの文脈における様々な復号法を包括的かつ多面的に分析する。
その結果,復号法の性能は特にタスク依存的であり,アライメント,モデルサイズ,量子化などの要因に影響されていることが明らかとなった。
論文 参考訳(メタデータ) (2024-02-10T11:14:53Z) - Successor Features for Efficient Multisubject Controlled Text Generation [48.37713738712319]
本稿では,後継機能 (SF) と言語モデル修正の2つの基本概念を基礎とするSF-GENを紹介する。
SF-GENはこの2つをシームレスに統合し、LCMのパラメータを変更することなくテキスト生成の動的ステアリングを可能にする。
我々の知る限り、本研究はテキスト生成における後継機能の最初の応用である。
論文 参考訳(メタデータ) (2023-11-03T00:17:08Z) - On the Possibilities of AI-Generated Text Detection [76.55825911221434]
機械が生成するテキストが人間に近い品質を近似するにつれて、検出に必要なサンプルサイズが増大すると主張している。
GPT-2, GPT-3.5-Turbo, Llama, Llama-2-13B-Chat-HF, Llama-2-70B-Chat-HFなどの最先端テキストジェネレータをoBERTa-Large/Base-Detector, GPTZeroなどの検出器に対して試験した。
論文 参考訳(メタデータ) (2023-04-10T17:47:39Z) - An Analysis of the Effects of Decoding Algorithms on Fairness in
Open-Ended Language Generation [77.44921096644698]
本稿では,復号化アルゴリズムがLMフェアネスに与える影響を体系的に分析する。
公平さ、多様性、品質のトレードオフを分析します。
論文 参考訳(メタデータ) (2022-10-07T21:33:34Z) - GenAug: Data Augmentation for Finetuning Text Generators [21.96895115572357]
本稿では,Yelp Reviews のサブセット上で GPT-2 を微調整するための外部知識を含む様々な拡張手法を提案し,評価する。
実験により,文字レベルの合成ノイズの挿入とハイパーネムのキーワード置換が効果的な拡張法であることを実証した。
論文 参考訳(メタデータ) (2020-10-05T05:46:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。