ConceptAgent: LLM-Driven Precondition Grounding and Tree Search for Robust Task Planning and Execution
- URL: http://arxiv.org/abs/2410.06108v1
- Date: Tue, 8 Oct 2024 15:05:40 GMT
- Title: ConceptAgent: LLM-Driven Precondition Grounding and Tree Search for Robust Task Planning and Execution
- Authors: Corban Rivera, Grayson Byrd, William Paul, Tyler Feldman, Meghan Booker, Emma Holmes, David Handelman, Bethany Kemp, Andrew Badger, Aurora Schmidt, Krishna Murthy Jatavallabhula, Celso M de Melo, Lalithkumar Seenivasan, Mathias Unberath, Rama Chellappa,
- Abstract summary: ConceptAgent is a natural language-driven robotic platform designed for task execution in unstructured environments.
We present innovations designed to limit shortcomings, including 1) Predicate Grounding to prevent and recover from infeasible actions, and 2) an embodied version of LLM-guided Monte Carlo Tree Search with self reflection.
- Score: 33.252158560173655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robotic planning and execution in open-world environments is a complex problem due to the vast state spaces and high variability of task embodiment. Recent advances in perception algorithms, combined with Large Language Models (LLMs) for planning, offer promising solutions to these challenges, as the common sense reasoning capabilities of LLMs provide a strong heuristic for efficiently searching the action space. However, prior work fails to address the possibility of hallucinations from LLMs, which results in failures to execute the planned actions largely due to logical fallacies at high- or low-levels. To contend with automation failure due to such hallucinations, we introduce ConceptAgent, a natural language-driven robotic platform designed for task execution in unstructured environments. With a focus on scalability and reliability of LLM-based planning in complex state and action spaces, we present innovations designed to limit these shortcomings, including 1) Predicate Grounding to prevent and recover from infeasible actions, and 2) an embodied version of LLM-guided Monte Carlo Tree Search with self reflection. In simulation experiments, ConceptAgent achieved a 19% task completion rate across three room layouts and 30 easy level embodied tasks outperforming other state-of-the-art LLM-driven reasoning baselines that scored 10.26% and 8.11% on the same benchmark. Additionally, ablation studies on moderate to hard embodied tasks revealed a 20% increase in task completion from the baseline agent to the fully enhanced ConceptAgent, highlighting the individual and combined contributions of Predicate Grounding and LLM-guided Tree Search to enable more robust automation in complex state and action spaces.
Related papers
- ET-Plan-Bench: Embodied Task-level Planning Benchmark Towards Spatial-Temporal Cognition with Foundation Models [39.606908488885125]
ET-Plan-Bench is a benchmark for embodied task planning using Large Language Models (LLMs)
It features a controllable and diverse set of embodied tasks varying in different levels of difficulties and complexities.
Our benchmark distinguishes itself as a large-scale, quantifiable, highly automated, and fine-grained diagnostic framework.
arXiv Detail & Related papers (2024-10-02T19:56:38Z) - Sibyl: Simple yet Effective Agent Framework for Complex Real-world Reasoning [12.80689911863731]
Sibyl is a powerful framework designed to tackle complex reasoning tasks by efficiently leveraging a minimal set of tools.
Sibyl implements a multi-agent debate-based jury to self-refine the final answers, ensuring a comprehensive and balanced approach.
Our experimental results on the GAIA benchmark test set reveal that the Sibyl agent achieves state-of-the-art performance with an average score of 34.55%.
arXiv Detail & Related papers (2024-07-15T13:45:40Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - Understanding the Weakness of Large Language Model Agents within a
Complex Android Environment [21.278266207772756]
Large language models (LLMs) have empowered intelligent agents to execute intricate tasks within domain-specific software such as browsers and games.
LLMs face three primary challenges when applied to general-purpose software systems like operating systems.
These challenges motivate AndroidArena, an environment and benchmark designed to evaluate LLM agents on a modern operating system.
arXiv Detail & Related papers (2024-02-09T18:19:25Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
We introduce TaskBench, a framework to evaluate the capability of large language models (LLMs) in task automation.
Specifically, task decomposition, tool selection, and parameter prediction are assessed.
Our approach combines automated construction with rigorous human verification, ensuring high consistency with human evaluation.
arXiv Detail & Related papers (2023-11-30T18:02:44Z) - ADaPT: As-Needed Decomposition and Planning with Language Models [131.063805299796]
We introduce As-Needed Decomposition and Planning for complex Tasks (ADaPT)
ADaPT explicitly plans and decomposes complex sub-tasks as-needed, when the Large Language Models is unable to execute them.
Our results demonstrate that ADaPT substantially outperforms established strong baselines.
arXiv Detail & Related papers (2023-11-08T17:59:15Z) - Tree-Planner: Efficient Close-loop Task Planning with Large Language Models [63.06270302774049]
Tree-Planner reframes task planning with Large Language Models into three distinct phases.
Tree-Planner achieves state-of-the-art performance while maintaining high efficiency.
arXiv Detail & Related papers (2023-10-12T17:59:50Z) - Dynamic Planning with a LLM [15.430182858130884]
Large Language Models (LLMs) can solve many NLP tasks in zero-shot settings, but applications involving embodied agents remain problematic.
Our work presents LLM Dynamic Planner (LLM-DP), a neuro-symbolic framework where an LLM works hand-in-hand with a traditional planner to solve an embodied task.
arXiv Detail & Related papers (2023-08-11T21:17:13Z) - AdaPlanner: Adaptive Planning from Feedback with Language Models [56.367020818139665]
Large language models (LLMs) have recently demonstrated the potential in acting as autonomous agents for sequential decision-making tasks.
We propose a closed-loop approach, AdaPlanner, which allows the LLM agent to refine its self-generated plan adaptively in response to environmental feedback.
To mitigate hallucination, we develop a code-style LLM prompt structure that facilitates plan generation across a variety of tasks, environments, and agent capabilities.
arXiv Detail & Related papers (2023-05-26T05:52:27Z) - Plan, Eliminate, and Track -- Language Models are Good Teachers for
Embodied Agents [99.17668730578586]
Pre-trained large language models (LLMs) capture procedural knowledge about the world.
Plan, Eliminate, and Track (PET) framework translates a task description into a list of high-level sub-tasks.
PET framework leads to a significant 15% improvement over SOTA for generalization to human goal specifications.
arXiv Detail & Related papers (2023-05-03T20:11:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.