論文の概要: UnSeGArmaNet: Unsupervised Image Segmentation using Graph Neural Networks with Convolutional ARMA Filters
- arxiv url: http://arxiv.org/abs/2410.06114v1
- Date: Tue, 8 Oct 2024 15:10:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 11:10:50.630017
- Title: UnSeGArmaNet: Unsupervised Image Segmentation using Graph Neural Networks with Convolutional ARMA Filters
- Title(参考訳): UnSeGArmaNet:畳み込みARMAフィルタを用いたグラフニューラルネットワークによる教師なし画像分割
- Authors: Kovvuri Sai Gopal Reddy, Bodduluri Saran, A. Mudit Adityaja, Saurabh J. Shigwan, Nitin Kumar, Snehasis Mukherjee,
- Abstract要約: 事前学習したViTを用いた教師なしセグメンテーションフレームワークを提案する。
画像内に固有のグラフ構造を利用することにより,セグメント化における顕著な性能を実現する。
提案手法は,ベンチマーク画像セグメンテーションデータセット上での最先端性能(教師付き手法に匹敵する)を提供する。
- 参考スコア(独自算出の注目度): 10.940349832919699
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The data-hungry approach of supervised classification drives the interest of the researchers toward unsupervised approaches, especially for problems such as medical image segmentation, where labeled data are difficult to get. Motivated by the recent success of Vision transformers (ViT) in various computer vision tasks, we propose an unsupervised segmentation framework with a pre-trained ViT. Moreover, by harnessing the graph structure inherent within the image, the proposed method achieves a notable performance in segmentation, especially in medical images. We further introduce a modularity-based loss function coupled with an Auto-Regressive Moving Average (ARMA) filter to capture the inherent graph topology within the image. Finally, we observe that employing Scaled Exponential Linear Unit (SELU) and SILU (Swish) activation functions within the proposed Graph Neural Network (GNN) architecture enhances the performance of segmentation. The proposed method provides state-of-the-art performance (even comparable to supervised methods) on benchmark image segmentation datasets such as ECSSD, DUTS, and CUB, as well as challenging medical image segmentation datasets such as KVASIR, CVC-ClinicDB, ISIC-2018. The github repository of the code is available on \url{https://github.com/ksgr5566/UnSeGArmaNet}.
- Abstract(参考訳): 教師付き分類によるデータハングリーアプローチは、特にラベル付きデータが入手が困難な医療画像のセグメンテーションのような問題に対して、教師なしのアプローチへの研究者の関心を喚起する。
コンピュータビジョンタスクにおけるビジョントランスフォーマー (ViT) の成功に触発されて, 事前学習したViTを用いた教師なしセグメンテーションフレームワークを提案する。
さらに, 画像内に存在するグラフ構造を利用して, 特に医用画像において, セグメンテーションにおける顕著な性能を実現する。
さらに、モジュラリティに基づく損失関数と自動回帰移動平均(ARMA)フィルタを組み合わせることで、画像内の固有のグラフトポロジをキャプチャする。
最後に,提案したグラフニューラルネットワーク(GNN)アーキテクチャにおいて,SELU(Scaled Exponential Linear Unit)とSILU(Swish)のアクティベーション機能を利用することにより,セグメンテーションの性能が向上することを示す。
提案手法は,ECSSD,DUTS,CUBなどのベンチマーク画像セグメンテーションデータセットに対して,KVASIR,CVC-ClinicDB,ISIC-2018などの医用画像セグメンテーションデータセットに対して,最先端のパフォーマンス(教師付き手法に匹敵する)を提供する。
コードのgithubリポジトリは \url{https://github.com/ksgr5566/UnSeGArmaNet} で公開されている。
関連論文リスト
- UnSegMedGAT: Unsupervised Medical Image Segmentation using Graph Attention Networks Clustering [10.862430265350804]
事前学習したDino-ViTを用いた教師なしセグメンテーションフレームワークを提案する。
医用画像のセグメンテーションにおける顕著な性能向上を実現するために,画像内のグラフ構造を利用する。
提案手法は,MedSAM などの既存の(セミ)手法をはるかに上回ったり,マッチさせたりすることで,最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-11-04T10:42:21Z) - UnSegGNet: Unsupervised Image Segmentation using Graph Neural Networks [9.268228808049951]
この研究は、教師なし医療画像とコンピュータビジョンの幅広い分野に貢献する。
これは、現実世界の課題に沿うイメージセグメンテーションのための革新的な方法論である。
提案手法は,医用画像,リモートセンシング,物体認識など,多様な応用の可能性を秘めている。
論文 参考訳(メタデータ) (2024-05-09T19:02:00Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS)は、コンピュータビジョンと自然言語処理を組み合わせた新しい課題である。
従来の参照画像(RIS)アプローチは、空中画像に見られる複雑な空間スケールと向きによって妨げられている。
本稿ではRMSIN(Rotated Multi-Scale Interaction Network)を紹介する。
論文 参考訳(メタデータ) (2023-12-19T08:14:14Z) - Graph Information Bottleneck for Remote Sensing Segmentation [8.879224757610368]
本稿では、画像をグラフ構造として扱い、リモートセンシングセグメンテーションのための単純なコントラスト視覚GNNアーキテクチャを提案する。
具体的には,ノードマップとエッジマップのグラフビューを構築し,最適なグラフ構造表現を得る。
UNetの畳み込みモジュールをSC-ViGモジュールに置き換え、セグメンテーションと分類タスクを完成させる。
論文 参考訳(メタデータ) (2023-12-05T07:23:22Z) - Unsupervised Domain Adaptation with Histogram-gated Image Translation
for Delayered IC Image Analysis [2.720699926154399]
Histogram-gated Image Translation (HGIT)は、特定のソースデータセットからターゲットデータセットのドメインに変換する、教師なしのドメイン適応フレームワークである。
提案手法は,報告したドメイン適応手法と比較して最高の性能を達成し,完全教師付きベンチマークに適当に近い。
論文 参考訳(メタデータ) (2022-09-27T15:53:22Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Learning Hierarchical Graph Representation for Image Manipulation
Detection [50.04902159383709]
画像操作検出の目的は、画像内の操作された領域を特定し、特定することである。
最近のアプローチでは、画像に残っている改ざんするアーティファクトをキャプチャするために、洗練された畳み込みニューラルネットワーク(CNN)が採用されている。
本稿では2つの並列分岐からなる階層型グラフ畳み込みネットワーク(HGCN-Net)を提案する。
論文 参考訳(メタデータ) (2022-01-15T01:54:25Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
この研究は、画像レベルのアノテーションとピクセルレベルのセグメンテーションのギャップを埋めることを目標に、弱い監督されたセマンティックセグメンテーション(WSSS)に対処する。
画像群における意味的依存関係を明示的にモデル化し,より信頼性の高い擬似的基盤構造を推定する,新たなグループ学習タスクとしてWSSSを定式化する。
特に、入力画像がグラフノードとして表現されるグループ単位のセマンティックマイニングのためのグラフニューラルネットワーク(GNN)を考案する。
論文 参考訳(メタデータ) (2020-12-09T12:40:13Z) - SCG-Net: Self-Constructing Graph Neural Networks for Semantic
Segmentation [23.623276007011373]
本稿では,画像から直接長距離依存グラフを学習し,コンテキスト情報を効率的に伝達するモジュールを提案する。
モジュールは、新しい適応対角法と変分下界により最適化される。
ニューラルネットワーク(SCG-Net)に組み込まれると、セマンティックセグメンテーションがエンドツーエンドで行われ、競争性能が向上する。
論文 参考訳(メタデータ) (2020-09-03T12:13:09Z) - High-Order Information Matters: Learning Relation and Topology for
Occluded Person Re-Identification [84.43394420267794]
本稿では,高次関係とトポロジ情報を識別的特徴とロバストなアライメントのために学習し,新しい枠組みを提案する。
我々のフレームワークはOccluded-Dukeデータセットで最先端の6.5%mAPスコアを大幅に上回っている。
論文 参考訳(メタデータ) (2020-03-18T12:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。