論文の概要: Less is More: Making Smaller Language Models Competent Subgraph Retrievers for Multi-hop KGQA
- arxiv url: http://arxiv.org/abs/2410.06121v1
- Date: Tue, 8 Oct 2024 15:22:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 11:00:50.337284
- Title: Less is More: Making Smaller Language Models Competent Subgraph Retrievers for Multi-hop KGQA
- Title(参考訳): より少ないもの:マルチホップKGQAのための小言語モデルと競合するサブグラフ検索
- Authors: Wenyu Huang, Guancheng Zhou, Hongru Wang, Pavlos Vougiouklis, Mirella Lapata, Jeff Z. Pan,
- Abstract要約: 本研究では,小言語モデルで処理される条件生成タスクとして,サブグラフ検索タスクをモデル化する。
2億2千万のパラメータからなる基本生成部分グラフ検索モデルでは,最先端モデルと比較して競合検索性能が向上した。
LLMリーダを接続した最大の3Bモデルは、WebQSPとCWQベンチマークの両方で、SOTAのエンドツーエンドパフォーマンスを新たに設定します。
- 参考スコア(独自算出の注目度): 51.3033125256716
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieval-Augmented Generation (RAG) is widely used to inject external non-parametric knowledge into large language models (LLMs). Recent works suggest that Knowledge Graphs (KGs) contain valuable external knowledge for LLMs. Retrieving information from KGs differs from extracting it from document sets. Most existing approaches seek to directly retrieve relevant subgraphs, thereby eliminating the need for extensive SPARQL annotations, traditionally required by semantic parsing methods. In this paper, we model the subgraph retrieval task as a conditional generation task handled by small language models. Specifically, we define a subgraph identifier as a sequence of relations, each represented as a special token stored in the language models. Our base generative subgraph retrieval model, consisting of only 220M parameters, achieves competitive retrieval performance compared to state-of-the-art models relying on 7B parameters, demonstrating that small language models are capable of performing the subgraph retrieval task. Furthermore, our largest 3B model, when plugged with an LLM reader, sets new SOTA end-to-end performance on both the WebQSP and CWQ benchmarks. Our model and data will be made available online: https://github.com/hwy9855/GSR.
- Abstract(参考訳): Retrieval-Augmented Generation (RAG) は、外部の非パラメトリック知識を大規模言語モデル(LLM)に注入するために広く用いられている。
近年の研究では、知識グラフ(KG)にはLLMの貴重な外部知識が含まれていることが示唆されている。
KGから情報を取得することは、文書集合から情報を抽出することとは異なる。
既存のほとんどのアプローチは、関連するサブグラフを直接取得しようとしており、伝統的にセマンティックパーシングメソッドで必要とされる広範なSPARQLアノテーションを不要にしている。
本稿では,小言語モデルで処理される条件生成タスクとして,サブグラフ検索タスクをモデル化する。
具体的には、サブグラフ識別子を関係の列として定義し、それぞれが言語モデルに格納された特別なトークンとして表現する。
220Mパラメータのみからなる基本生成サブグラフ検索モデルは、7Bパラメータに依存する最先端モデルと比較して競争力のある検索性能を達成し、小言語モデルがサブグラフ検索タスクを実行可能であることを示す。
さらに,LLMリーダを接続した最大の3Bモデルは,WebQSPとCWQベンチマークの両方でSOTAのエンドツーエンド性能を新たに設定する。
私たちのモデルとデータはオンラインで利用可能になります。
関連論文リスト
- RepLiQA: A Question-Answering Dataset for Benchmarking LLMs on Unseen Reference Content [13.187520657952263]
大規模言語モデル(LLM)は大量のデータに基づいて訓練されており、そのほとんどは自動的にインターネットから取り除かれる。
トレーニングセットに漏れたかもしれない テストスプリットのモデルを評価する 結論を誤解させる傾向がある
本稿では,質問応答とトピック検索タスクに適したRepLiQAという新しいテストデータセットを提案する。
論文 参考訳(メタデータ) (2024-06-17T17:52:54Z) - Scalable Performance Analysis for Vision-Language Models [26.45624201546282]
統合視覚言語モデルは、様々なタスクセットに対して優れたパフォーマンスを示している。
本稿では、すでにアノテーション付きベンチマークに依存する、よりスケーラブルなソリューションを紹介します。
従来,CLIPは単語の袋のように振る舞い,名詞や動詞でより良く振る舞うことが確認された。
論文 参考訳(メタデータ) (2023-05-30T06:40:08Z) - AnnoLLM: Making Large Language Models to Be Better Crowdsourced Annotators [98.11286353828525]
GPT-3.5シリーズのモデルは、様々なNLPタスクにまたがる顕著な少数ショットとゼロショットの能力を示している。
本稿では,2段階のアプローチを取り入れたAnnoLLMを提案する。
我々はAnnoLLMを用いた対話型情報検索データセットを構築した。
論文 参考訳(メタデータ) (2023-03-29T17:03:21Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
KGQA(Multi-hop Question Answering over Knowledge Graph)は、自然言語の質問で言及されているトピックエンティティから、複数のホップを持つ回答エンティティを見つけることを目的としている。
我々は、モデルアーキテクチャとパラメータ学習の両方において、検索と推論を統合することで、マルチホップKGQAタスクの新しいアプローチであるUniKGQAを提案する。
論文 参考訳(メタデータ) (2022-12-02T04:08:09Z) - UnifieR: A Unified Retriever for Large-Scale Retrieval [84.61239936314597]
大規模な検索は、クエリを与えられた巨大なコレクションから関連ドキュメントをリコールすることである。
事前学習型言語モデル(PLM)に基づく最近の検索手法は,高密度ベクターあるいはレキシコンに基づくパラダイムに大別することができる。
本論文では,高密度ベクトルとレキシコンに基づく検索を2つの表現能力を持つ1つのモデルで統合する学習フレームワークUnifieRを提案する。
論文 参考訳(メタデータ) (2022-05-23T11:01:59Z) - Autoregressive Search Engines: Generating Substrings as Document
Identifiers [53.0729058170278]
自動回帰言語モデルは、回答を生成するデファクト標準として現れています。
これまでの研究は、探索空間を階層構造に分割する方法を探究してきた。
本研究では,検索空間の任意の構造を強制しない代替として,経路内のすべてのngramを識別子として使用することを提案する。
論文 参考訳(メタデータ) (2022-04-22T10:45:01Z) - Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks [133.93803565077337]
検索強化生成モデルは、事前訓練されたパラメトリックメモリと非パラメトリックメモリを組み合わせて言語生成を行う。
我々は、RAGモデルが、最先端パラメトリックのみのセク2セックベースラインよりも、より具体的で、多様で、現実的な言語を生成することを示す。
論文 参考訳(メタデータ) (2020-05-22T21:34:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。