論文の概要: MC-MoE: Mixture Compressor for Mixture-of-Experts LLMs Gains More
- arxiv url: http://arxiv.org/abs/2410.06270v1
- Date: Tue, 8 Oct 2024 18:09:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 10:21:03.823722
- Title: MC-MoE: Mixture Compressor for Mixture-of-Experts LLMs Gains More
- Title(参考訳): MC-MoE:LLM混合圧縮機がさらに向上
- Authors: Wei Huang, Yue Liao, Jianhui Liu, Ruifei He, Haoru Tan, Shiming Zhang, Hongsheng Li, Si Liu, Xiaojuan Qi,
- Abstract要約: 我々は、Mixture-of-Experts大言語モデル(MoE-LLM)のためのトレーニング不要なMixture-CompressorであるMC-MoEを提案する。
MC-MoEは、専門家とトークンの両方の重要性を活用して極端な圧縮を実現する。
例えば、MC-MoEは2.54ビットで76.6%の圧縮を行い、平均精度損失は3.8%に過ぎなかった。
- 参考スコア(独自算出の注目度): 71.0473038084673
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mixture-of-Experts large language models (MoE-LLMs) marks a significant step forward of language models, however, they encounter two critical challenges in practice: 1) expert parameters lead to considerable memory consumption and loading latency; and 2) the current activated experts are redundant, as many tokens may only require a single expert. Motivated by these issues, we investigate the MoE-LLMs and make two key observations: a) different experts exhibit varying behaviors on activation reconstruction error, routing scores, and activated frequencies, highlighting their differing importance, and b) not all tokens are equally important -- only a small subset is critical. Building on these insights, we propose MC-MoE, a training-free Mixture-Compressor for MoE-LLMs, which leverages the significance of both experts and tokens to achieve an extreme compression. First, to mitigate storage and loading overheads, we introduce Pre-Loading Mixed-Precision Quantization, which formulates the adaptive bit-width allocation as a Linear Programming problem, where the objective function balances multi-factors reflecting the importance of each expert. Additionally, we develop Online Dynamic Pruning, which identifies important tokens to retain and dynamically select activated experts for other tokens during inference to optimize efficiency while maintaining performance. Our MC-MoE integrates static quantization and dynamic pruning to collaboratively achieve extreme compression for MoE-LLMs with less accuracy loss, ensuring an optimal trade-off between performance and efficiency. Extensive experiments confirm the effectiveness of our approach. For instance, at 2.54 bits, MC-MoE compresses 76.6% of the model, with only a 3.8% average accuracy loss. During dynamic inference, we further reduce activated parameters by 15%, with a performance drop of less than 0.6%.
- Abstract(参考訳): Mixture-of-Experts Large Language Model (MoE-LLMs)は、言語モデルにとって重要な一歩だが、実際には2つの重要な課題に直面している。
1)エキスパートパラメータは、メモリ消費と負荷遅延をかなり引き起こす。
2) 現在のアクティベートされた専門家は冗長であり、多くのトークンは単一の専門家しか必要としない。
これらの問題に触発されて、我々はMoE-LLMを調査し、2つの重要な観察を行った。
a) 異なる専門家は、アクティベーション再構成誤差、ルーティングスコア、アクティベーション周波数に関する様々な行動を示し、その重要性を強調し、
b) すべてのトークンが等しく重要であるわけではない。
これらの知見に基づいて,MoE-LLMのトレーニング不要な混合圧縮機MC-MoEを提案する。
まず、ストレージとロードのオーバーヘッドを軽減するために、各専門家の重要性を反映した多要素のバランスをとる線形プログラミング問題として、適応ビット幅割り当てを定式化するプリロード混合精度量子化を導入する。
さらに,性能を維持しながら効率を最適化するために,他のトークンに対するアクティベートされた専門家の保持と動的選択を行う重要なトークンを識別するオンラインダイナミックプルーニングを開発した。
我々のMC-MoEは静的量子化と動的プルーニングを統合し、MoE-LLMの極端な圧縮を精度の低下で協調的に達成し、性能と効率の最適なトレードオフを確保する。
大規模な実験により、我々のアプローチの有効性が確認された。
例えば、MC-MoEは2.54ビットで76.6%の圧縮を行い、平均精度損失は3.8%に過ぎなかった。
動的推論では、アクティベートパラメータを15%削減し、性能低下は0.6%未満である。
関連論文リスト
- HOBBIT: A Mixed Precision Expert Offloading System for Fast MoE Inference [54.40808356999408]
フレキシブルで効率的なMoE推論を実現するための混合精度専門家オフロードシステムHOBBITを提案する。
キーとなる洞察は、重要でないキャッシュミスの専門家を低い精度で動的に置き換えることで、専門家のロード遅延を大幅に削減できるということです。
HOBBITは、最先端のMoEオフロードシステムと比較して、デコードで最大9.93倍のスピードアップを達成する。
論文 参考訳(メタデータ) (2024-11-03T04:25:46Z) - AdapMoE: Adaptive Sensitivity-based Expert Gating and Management for Efficient MoE Inference [13.263938935671646]
AdapMoEは、効率的なMoE推論のためのアルゴリズムとシステムの共同設計フレームワークである。
AdapMoEは、オンデマンドのロードオーバーヘッドを減らすために、アダプティブなエキスパートゲーティングと管理機能を備えている。
AdapMoEは既存の技術より一貫して優れており、アクティベートされた専門家の平均数が25%減少し、精度を低下させることなく1.35倍のスピードアップを実現している。
論文 参考訳(メタデータ) (2024-08-19T03:27:15Z) - BAM! Just Like That: Simple and Efficient Parameter Upcycling for Mixture of Experts [41.83123857437985]
大規模な体制でゼロからMoEを訓練することは違法に高価である。
本稿では,BAM(Branch-Attend-Mix)を提案する。
5億9000万から20億のパラメータのシードモデルに関する実験では、BAMがパープレキシティとダウンストリームのタスクパフォーマンスの両方でベースラインを超えていることが示されている。
論文 参考訳(メタデータ) (2024-08-15T17:19:12Z) - Multi-Head Mixture-of-Experts [100.60556163597946]
MH-MoE(Multi-Head Mixture-of-Experts)を提案する。
MH-MoEは、他のSMoE最適化手法の実装と分離が容易であり、性能向上のために他のSMoEモデルとの統合が容易である。
論文 参考訳(メタデータ) (2024-04-23T13:47:09Z) - Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning [50.73666458313015]
大規模言語モデル(LLM)はマルチメディアアプリケーションで複数のタスクを実行する上で大きな可能性を証明している。
MoEは、効率的なタスクデカップリングのためのスパースアーキテクチャによる有望なソリューションとして登場した。
Intuition-MoR1Eは14のパブリックデータセットで優れた効率と2.15%の全体的な精度向上を実現している。
論文 参考訳(メタデータ) (2024-04-13T12:14:58Z) - SEER-MoE: Sparse Expert Efficiency through Regularization for Mixture-of-Experts [49.01990048827639]
本稿では,事前学習したMoEモデルのメモリフットプリントと計算要求の両方を削減するためのフレームワークSEER-MoEを紹介する。
第1段階では、ヘビーヒッターズカウントガイダンスを使用して専門家の総数を計算し、第2段階では、正則化に基づく微調整戦略を使用して精度の低下を回復する。
実験により,提案手法の有効性を実証し,精度のトレードオフを最小限に抑えた推論効率に最適化したMoEsモデルを試作した。
論文 参考訳(メタデータ) (2024-04-07T22:13:43Z) - Efficient Deweather Mixture-of-Experts with Uncertainty-aware
Feature-wise Linear Modulation [44.43376913419967]
本稿では,専門家間での重み共有が可能なMixture-of-Experts(MoE)アーキテクチャを提案する。
MoFMEは、単一の共有専門家ブロック上で学習可能なアクティベーション変調を通じて、暗黙的に複数の専門家をインスタンス化する。
実験の結果,MoFMEは画像修復品質の基準線を0.1-0.2dBで上回ることがわかった。
論文 参考訳(メタデータ) (2023-12-27T15:23:37Z) - Task-Specific Expert Pruning for Sparse Mixture-of-Experts [105.20605021416276]
Mixture-of-Experts (MoE) モデルは大規模な事前トレーニングには強力である。
MoEはクラウドやモバイル環境にデプロイするのは難しい。
本稿では,目標下流タスクの非専門的専門家を段階的に降ろす方法を提案する。
論文 参考訳(メタデータ) (2022-06-01T07:09:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。