Probing the Robustness of Theory of Mind in Large Language Models
- URL: http://arxiv.org/abs/2410.06271v1
- Date: Tue, 8 Oct 2024 18:13:27 GMT
- Title: Probing the Robustness of Theory of Mind in Large Language Models
- Authors: Christian Nickel, Laura Schrewe, Lucie Flek,
- Abstract summary: We introduce a novel dataset of 68 tasks for probing ToM in LLMs.
We evaluate the ToM performance of four SotA open source LLMs on our dataset and the dataset introduced by (Kosinski, 2023)
We find a consistent tendency in all tested LLMs to perform poorly on tasks that require the realization that an agent has knowledge of automatic state changes in its environment.
- Score: 6.7932860553262415
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With the success of ChatGPT and other similarly sized SotA LLMs, claims of emergent human like social reasoning capabilities, especially Theory of Mind (ToM), in these models have appeared in the scientific literature. On the one hand those ToM-capabilities have been successfully tested using tasks styled similar to those used in psychology (Kosinski, 2023). On the other hand, follow up studies showed that those capabilities vanished when the tasks were slightly altered (Ullman, 2023). In this work we introduce a novel dataset of 68 tasks for probing ToM in LLMs, including potentially challenging variations which are assigned to 10 complexity classes. This way it is providing novel insights into the challenges LLMs face with those task variations. We evaluate the ToM performance of four SotA open source LLMs on our dataset and the dataset introduced by (Kosinski, 2023). The overall low goal accuracy across all evaluated models indicates only a limited degree of ToM capabilities. The LLMs' performance on simple complexity class tasks from both datasets are similar. Whereas we find a consistent tendency in all tested LLMs to perform poorly on tasks that require the realization that an agent has knowledge of automatic state changes in its environment, even when those are spelled out to the model. For task complications that change the relationship between objects by replacing prepositions, we notice a performance drop in all models, with the strongest impact on the mixture-of-experts model. With our dataset of tasks grouped by complexity we offer directions for further research on how to stabilize and advance ToM capabilities in LLM.
Related papers
- MM-R$^3$: On (In-)Consistency of Multi-modal Large Language Models (MLLMs) [26.475993408532304]
We study the ability of an MLLM model to produce semantically similar or identical responses to semantically similar queries.
We propose the MM-R$3$ benchmark, which analyses the performance in terms of consistency and accuracy in SoTA MLLMs.
Our analysis reveals that consistency does not always align with accuracy, indicating that models with higher accuracy are not necessarily more consistent, and vice versa.
arXiv Detail & Related papers (2024-10-07T06:36:55Z) - Do Large Language Models Have Compositional Ability? An Investigation into Limitations and Scalability [12.349247962800813]
Large language models (LLMs) have emerged as powerful tools for many AI problems.
They exhibit remarkable in-context learning (ICL) capabilities.
How they approach composite tasks remains an open and largely underexplored question.
arXiv Detail & Related papers (2024-07-22T15:22:34Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
We introduce Dynamic Evaluation of LLMs via Adaptive Reasoning Graph Evolvement (DARG) to dynamically extend current benchmarks with controlled complexity and diversity.
Specifically, we first extract the reasoning graphs of data points in current benchmarks and then perturb the reasoning graphs to generate novel testing data.
Such newly generated test samples can have different levels of complexity while maintaining linguistic diversity similar to the original benchmarks.
arXiv Detail & Related papers (2024-06-25T04:27:53Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - Benchmarking Large Language Models for Molecule Prediction Tasks [7.067145619709089]
Large Language Models (LLMs) stand at the forefront of a number of Natural Language Processing (NLP) tasks.
This paper explores a fundamental question: Can LLMs effectively handle molecule prediction tasks?
We identify several classification and regression prediction tasks across six standard molecule datasets.
We compare their performance with existing Machine Learning (ML) models, which include text-based models and those specifically designed for analysing the geometric structure of molecules.
arXiv Detail & Related papers (2024-03-08T05:59:56Z) - Look Before You Leap: A Universal Emergent Decomposition of Retrieval
Tasks in Language Models [58.57279229066477]
We study how language models (LMs) solve retrieval tasks in diverse situations.
We introduce ORION, a collection of structured retrieval tasks spanning six domains.
We find that LMs internally decompose retrieval tasks in a modular way.
arXiv Detail & Related papers (2023-12-13T18:36:43Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z) - ToMChallenges: A Principle-Guided Dataset and Diverse Evaluation Tasks for Exploring Theory of Mind [3.9599054392856483]
We present ToMChallenges, a dataset for comprehensively evaluating the Theory of Mind based on the Sally-Anne and Smarties tests with a diverse set of tasks.
Our evaluation results and error analyses show that LLMs have inconsistent behaviors across prompts and tasks.
arXiv Detail & Related papers (2023-05-24T11:54:07Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
This paper investigates the capabilities of large language models (LLMs) in performing various sentiment analysis tasks.
We evaluate performance across 13 tasks on 26 datasets and compare the results against small language models (SLMs) trained on domain-specific datasets.
arXiv Detail & Related papers (2023-05-24T10:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.