Do Large Language Models Have Compositional Ability? An Investigation into Limitations and Scalability
- URL: http://arxiv.org/abs/2407.15720v2
- Date: Sun, 11 Aug 2024 04:39:16 GMT
- Title: Do Large Language Models Have Compositional Ability? An Investigation into Limitations and Scalability
- Authors: Zhuoyan Xu, Zhenmei Shi, Yingyu Liang,
- Abstract summary: Large language models (LLMs) have emerged as powerful tools for many AI problems.
They exhibit remarkable in-context learning (ICL) capabilities.
How they approach composite tasks remains an open and largely underexplored question.
- Score: 12.349247962800813
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have emerged as powerful tools for many AI problems and exhibit remarkable in-context learning (ICL) capabilities. Compositional ability, solving unseen complex tasks that combine two or more simple tasks, is an essential reasoning ability for Artificial General Intelligence. Despite the tremendous success of LLMs, how they approach composite tasks, especially those not encountered during the pretraining phase, remains an open and largely underexplored question. In this study, we delve into the ICL capabilities of LLMs on composite tasks, with only simple tasks as in-context examples. We develop a test suite of composite tasks including linguistic and logical challenges and perform empirical studies across different LLM families. We observe that models exhibit divergent behaviors: (1) For simpler composite tasks that apply distinct mapping mechanisms to different input segments, the models demonstrate decent compositional ability, while scaling up the model enhances this ability; (2) for more complex composite tasks involving reasoning multiple steps, where each step represents one task, models typically underperform, and scaling up generally provides no improvements. We offer theoretical analysis in a simplified setting, explaining that models exhibit compositional capability when the task handles different input parts separately. We believe our work sheds new light on the capabilities of LLMs in solving composite tasks regarding the nature of the tasks and model scale. Our dataset and code are available at {\url{https://github.com/OliverXUZY/LLM_Compose}}.
Related papers
- Limits of Deep Learning: Sequence Modeling through the Lens of Complexity Theory [15.24542569393982]
Despite their successes, deep learning models struggle with tasks requiring complex reasoning and function composition.
We present a theoretical and empirical investigation into the limitations of Structured State Space Models (SSMs) and Transformers in such tasks.
We highlight the need for innovative solutions to achieve reliable multi-step reasoning and compositional task-solving.
arXiv Detail & Related papers (2024-05-26T19:33:23Z) - Smurfs: Leveraging Multiple Proficiency Agents with Context-Efficiency for Tool Planning [14.635361844362794]
Smurfs' is a cutting-edge multi-agent framework designed to revolutionize the application of large language models.
Smurfs can enhance the model's ability to solve complex tasks at no additional cost.
arXiv Detail & Related papers (2024-05-09T17:49:04Z) - How does Multi-Task Training Affect Transformer In-Context Capabilities? Investigations with Function Classes [6.652837942112205]
Large language models (LLM) have recently shown the extraordinary ability to perform unseen tasks based on few-shot examples provided as text.
We propose several effective curriculum learning strategies that allow ICL models to achieve higher data efficiency and more stable convergence.
Our experiments reveal that ICL models can effectively learn difficult tasks by training on progressively harder tasks while mixing in prior tasks, denoted as mixed curriculum in this work.
arXiv Detail & Related papers (2024-04-04T16:15:23Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs.
We propose a novel approach that decomposes the aforementioned capabilities into a planner, caller, and summarizer.
This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability.
arXiv Detail & Related papers (2024-01-14T16:17:07Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corex is a suite of novel general-purpose strategies that transform Large Language Models into autonomous agents.
Inspired by human behaviors, Corex is constituted by diverse collaboration paradigms including Debate, Review, and Retrieve modes.
We demonstrate that orchestrating multiple LLMs to work in concert yields substantially better performance compared to existing methods.
arXiv Detail & Related papers (2023-09-30T07:11:39Z) - Skills-in-Context Prompting: Unlocking Compositionality in Large Language Models [68.18370230899102]
We investigate how to elicit compositional generalization capabilities in large language models (LLMs)
We find that demonstrating both foundational skills and compositional examples grounded in these skills within the same prompt context is crucial.
We show that fine-tuning LLMs with SKiC-style data can elicit zero-shot weak-to-strong generalization.
arXiv Detail & Related papers (2023-08-01T05:54:12Z) - Musketeer: Joint Training for Multi-task Vision Language Model with Task Explanation Prompts [75.75548749888029]
We present a vision-language model whose parameters are jointly trained on all tasks and fully shared among multiple heterogeneous tasks.
With a single model, Musketeer achieves results comparable to or better than strong baselines trained on single tasks, almost uniformly across multiple tasks.
arXiv Detail & Related papers (2023-05-11T17:57:49Z) - Collaborating with language models for embodied reasoning [30.82976922056617]
Reasoning in a complex and ambiguous environment is a key goal for Reinforcement Learning (RL) agents.
We present a set of tasks that require reasoning, test this system's ability to generalize zero-shot and investigate failure cases.
arXiv Detail & Related papers (2023-02-01T21:26:32Z) - Mod-Squad: Designing Mixture of Experts As Modular Multi-Task Learners [74.92558307689265]
We propose Mod-Squad, a new model that is Modularized into groups of experts (a 'Squad')
We optimize this matching process during the training of a single model.
Experiments on the Taskonomy dataset with 13 vision tasks and the PASCAL-Context dataset with 5 vision tasks show the superiority of our approach.
arXiv Detail & Related papers (2022-12-15T18:59:52Z) - Combining Modular Skills in Multitask Learning [149.8001096811708]
A modular design encourages neural models to disentangle and recombine different facets of knowledge to generalise more systematically to new tasks.
In this work, we assume each task is associated with a subset of latent discrete skills from a (potentially small) inventory.
We find that the modular design of a network significantly increases sample efficiency in reinforcement learning and few-shot generalisation in supervised learning.
arXiv Detail & Related papers (2022-02-28T16:07:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.