論文の概要: Model Predictive Control is Almost Optimal for Restless Bandit
- arxiv url: http://arxiv.org/abs/2410.06307v1
- Date: Tue, 8 Oct 2024 19:34:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 06:29:16.972336
- Title: Model Predictive Control is Almost Optimal for Restless Bandit
- Title(参考訳): モデル予測制御は安静帯域にほぼ最適である
- Authors: Nicolas Gast, Dheeraj Narasimha,
- Abstract要約: 離散時間無限水平平均報酬(RMAB)問題を考える。
本稿では, 回転型計算水平方向を$tau$とする非定常ポリシーを提案する。
局所安定性条件下では、その部分最適性ギャップは一般に$O(1/sqrtN)$、$exp(-Omega(N))$である。
- 参考スコア(独自算出の注目度): 2.295863158976069
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We consider the discrete time infinite horizon average reward restless markovian bandit (RMAB) problem. We propose a \emph{model predictive control} based non-stationary policy with a rolling computational horizon $\tau$. At each time-slot, this policy solves a $\tau$ horizon linear program whose first control value is kept as a control for the RMAB. Our solution requires minimal assumptions and quantifies the loss in optimality in terms of $\tau$ and the number of arms, $N$. We show that its sub-optimality gap is $O(1/\sqrt{N})$ in general, and $\exp(-\Omega(N))$ under a local-stability condition. Our proof is based on a framework from dynamic control known as \emph{dissipativity}. Our solution easy to implement and performs very well in practice when compared to the state of the art. Further, both our solution and our proof methodology can easily be generalized to more general constrained MDP settings and should thus, be of great interest to the burgeoning RMAB community.
- Abstract(参考訳): 離散時間無限水平平均報酬(RMAB)問題を考える。
転がり計算の地平線を$\tau$で表わすような非定常的ポリシーを, \emph{model predictive control} に基づいて提案する。
各時間スロットにおいて、このポリシーはRMABの制御として第1の制御値を保持する$\tau$水平線形プログラムを解く。
我々の解は最小限の仮定を必要とし、$\tau$と腕の数、$N$で最適性の損失を定量化する。
その部分最適性ギャップは一般に$O(1/\sqrt{N})$であり、局所安定条件下では$\exp(-\Omega(N))$である。
我々の証明は 'emph{dissipativity} として知られる動的制御の枠組みに基づいている。
私たちのソリューションは実装が容易で、最先端のソリューションと比較して非常にうまく機能します。
さらに、我々のソリューションと証明手法は、より一般的な制約されたMDP設定に容易に一般化できるので、新興のRMABコミュニティにとって大きな関心を持つべきである。
関連論文リスト
- Efficient Frameworks for Generalized Low-Rank Matrix Bandit Problems [61.85150061213987]
一般化線形モデル (GLM) フレームワークを用いて, citelu2021low で提案した一般化低ランク行列帯域問題について検討する。
既存のアルゴリズムの計算不可能性と理論的制約を克服するため,まずG-ESTTフレームワークを提案する。
G-ESTT は $tildeO(sqrt(d_1+d_2)3/2Mr3/2T)$ bound of regret を達成でき、G-ESTS は $tildeO を達成できることを示す。
論文 参考訳(メタデータ) (2024-01-14T14:14:19Z) - Corruption-Robust Offline Reinforcement Learning with General Function
Approximation [60.91257031278004]
一般関数近似を用いたオフライン強化学習(RL)における劣化問題について検討する。
我々のゴールは、崩壊しないマルコフ決定プロセス(MDP)の最適方針に関して、このような腐敗に対して堅牢で、最適でないギャップを最小限に抑える政策を見つけることである。
論文 参考訳(メタデータ) (2023-10-23T04:07:26Z) - Restless Bandits with Average Reward: Breaking the Uniform Global
Attractor Assumption [12.471848976031904]
基本的な目標は、腕の数($N$)が大きくなるにつれて、最適性のギャップを小さくするポリシーを効率的に計算することである。
既存の最適性に関する結果は、すべて一様大域的誘引特性(UGAP)に依存している。
我々は,任意の単一武器のポリシーを元の$N$武器の問題に対するポリシーに変換する,汎用的なシミュレーションベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-31T21:26:43Z) - Estimating Optimal Policy Value in General Linear Contextual Bandits [50.008542459050155]
多くのバンドイット問題において、政策によって達成可能な最大報酬は、前もって不明であることが多い。
我々は,最適政策が学習される前に,サブ線形データ構造における最適政策値を推定する問題を考察する。
V*$で問題依存上界を推定する,より実用的で効率的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-19T01:09:24Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
縮退した線形マルコフ+デルタ決定における最適同定問題について, 生成モデルに基づく固定信頼度設定における検討を行った。
複雑な非最適化プログラムの解としての下位境界は、そのようなアルゴリズムを考案する出発点として用いられる。
論文 参考訳(メタデータ) (2022-08-11T04:12:50Z) - Towards Painless Policy Optimization for Constrained MDPs [46.12526917024248]
我々は、無限の地平線における政策最適化、$gamma$-discounted constrained Markov decision process (CMDP)について研究する。
我々の目標は、小さな制約違反で大きな期待された報酬を達成する政策を返却することである。
本稿では,任意のアルゴリズムに対して,報酬の準最適性と制約違反を拘束できる汎用的原始双対フレームワークを提案する。
論文 参考訳(メタデータ) (2022-04-11T15:08:09Z) - Towards Instance-Optimal Offline Reinforcement Learning with Pessimism [34.54294677335518]
我々は、未知マルコフ決定過程(MDP)における報酬最大化ポリシーの学習を目標とするオフライン強化学習(オフラインRL)問題について検討する。
本研究では、適応悲観的値反復法(APVI)アルゴリズムを分析し、[Oleft(sum_h=1Hsum_s_h,a_hdpistar_h(s_h,a_h)sqrtfracmathrmmathrmVar_]とほぼ一致する準最適上限を導出する。
論文 参考訳(メタデータ) (2021-10-17T01:21:52Z) - Stochastic Bandits with Linear Constraints [69.757694218456]
制約付き文脈線形帯域設定について検討し、エージェントの目標は一連のポリシーを作成することである。
楽観的悲観的線形帯域(OPLB)と呼ばれる,この問題に対する高信頼束縛アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-17T22:32:19Z) - Naive Exploration is Optimal for Online LQR [49.681825576239355]
最適後悔尺度は$widetildeTheta(sqrtd_mathbfu2 d_mathbfx T)$で、$T$は時間ステップの数、$d_mathbfu$は入力空間の次元、$d_mathbfx$はシステム状態の次元である。
我々の下界は、かつての$mathrmpoly(logT)$-regretアルゴリズムの可能性を排除する。
論文 参考訳(メタデータ) (2020-01-27T03:44:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。