論文の概要: MIRACLE 3D: Memory-efficient Integrated Robust Approach for Continual Learning on Point Clouds via Shape Model construction
- arxiv url: http://arxiv.org/abs/2410.06418v1
- Date: Tue, 8 Oct 2024 23:12:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 05:49:26.023153
- Title: MIRACLE 3D: Memory-efficient Integrated Robust Approach for Continual Learning on Point Clouds via Shape Model construction
- Title(参考訳): MIRACLE 3D:形状モデル構築による点群における連続学習のためのメモリ効率統合ロバストアプローチ
- Authors: Hossein Resani, Behrooz Nasihatkon,
- Abstract要約: 本稿では,3次元オブジェクト分類におけるメモリ効率とプライバシ保護の継続学習のための新しいフレームワークを提案する。
提案手法は各クラスに対してコンパクトな形状モデルを構築し,各クラスの平均形状のみを保持するとともに,いくつかのキーモードの変動も保持する。
我々は、ModelNet40、ShapeNet、ScanNetデータセットに関する広範な実験を通じて、我々のアプローチを検証する。
- 参考スコア(独自算出の注目度): 0.4604003661048266
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce a novel framework for memory-efficient and privacy-preserving continual learning in 3D object classification. Unlike conventional memory-based approaches in continual learning that require storing numerous exemplars, our method constructs a compact shape model for each class, retaining only the mean shape along with a few key modes of variation. This strategy not only enables the generation of diverse training samples while drastically reducing memory usage but also enhances privacy by eliminating the need to store original data. To further improve model robustness against input variations, an issue common in 3D domains due to the absence of strong backbones and limited training data, we incorporate Gradient Mode Regularization. This technique enhances model stability and broadens classification margins, resulting in accuracy improvements. We validate our approach through extensive experiments on the ModelNet40, ShapeNet, and ScanNet datasets, where we achieve state-of-the-art performance. Notably, our method consumes only 15% of the memory required by competing methods on the ModelNet40 and ShapeNet, while achieving comparable performance on the challenging ScanNet dataset with just 8.5% of the memory. These results underscore the scalability, effectiveness, and privacy-preserving strengths of our framework for 3D object classification.
- Abstract(参考訳): 本稿では,3次元オブジェクト分類におけるメモリ効率とプライバシ保護の継続学習のための新しいフレームワークを提案する。
連続学習における従来のメモリベースアプローチとは違って,各クラスのコンパクトな形状モデルを構築し,平均形状といくつかのキーモードを同時に保持する。
この戦略は、メモリ使用量を大幅に削減しつつ、多様なトレーニングサンプルの生成を可能にするだけでなく、元のデータを格納する必要をなくして、プライバシを向上させる。
入力変動に対するモデルロバスト性,強いバックボーンと限られたトレーニングデータがないことによる3次元領域に共通する問題をさらに改善するため,グラディエントモード規則化(Gradient Mode regularization)を取り入れた。
この手法によりモデルの安定性が向上し、分類マージンが拡大し、精度が向上する。
我々は、ModelNet40、ShapeNet、ScanNetデータセットに関する広範な実験を通じてアプローチを検証する。
特に,本手法は,ModelNet40とShapeNetで競合する手法で要求されるメモリの15%しか消費しないが,ScanNetデータセットでは8.5%のメモリで同等のパフォーマンスを実現している。
これらの結果は,3次元オブジェクト分類のためのフレームワークのスケーラビリティ,有効性,およびプライバシ保護の強みを裏付けるものである。
関連論文リスト
- Semi-supervised Single-view 3D Reconstruction via Multi Shape Prior Fusion Strategy and Self-Attention [0.0]
半教師付き学習戦略はラベル付きデータへの依存を減らす革新的なアプローチを提供する。
我々は3次元再構成のための革新的なフレームワークを作成した。
当社のフレームワークでは,ベースラインよりも3.3%パフォーマンスが向上した。
論文 参考訳(メタデータ) (2024-11-23T02:46:16Z) - Foundation Model-Powered 3D Few-Shot Class Incremental Learning via Training-free Adaptor [9.54964908165465]
本稿では,3Dポイントクラウド環境におけるFew-Shot連続インクリメンタルラーニング問題に対処する新しい手法を提案する。
私たちは、ポイントクラウドデータに基づいて広範囲にトレーニングされた基礎的な3Dモデルを活用します。
このアプローチでは、二重キャッシュシステムを使用します。まず、モデルの予測にどれだけ自信があるかに基づいて、以前のテストサンプルを使用し、次に、オーバーフィッティングを防ぐために、少数の新しいタスクサンプルを含んでいます。
論文 参考訳(メタデータ) (2024-10-11T20:23:00Z) - iNeMo: Incremental Neural Mesh Models for Robust Class-Incremental Learning [22.14627083675405]
我々は、時間とともに新しいメッシュで拡張できるインクリメンタルニューラルネットワークモデルを提案する。
本研究では,Pascal3DおよびObjectNet3Dデータセットの広範な実験を通して,本手法の有効性を実証する。
我々の研究は、ポーズ推定のための最初の漸進的な学習手法も提示している。
論文 参考訳(メタデータ) (2024-07-12T13:57:49Z) - Dynamic Pre-training: Towards Efficient and Scalable All-in-One Image Restoration [100.54419875604721]
オールインワン画像復元は、各分解に対してタスク固有の非ジェネリックモデルを持たずに、統一されたモデルで異なるタイプの劣化に対処する。
我々は、オールインワン画像復元タスクのためのエンコーダデコーダ方式で設計されたネットワークの動的ファミリであるDyNetを提案する。
我々のDyNetは、よりバルク化と軽量化をシームレスに切り替えることができるので、効率的なモデルデプロイメントのための柔軟性を提供します。
論文 参考訳(メタデータ) (2024-04-02T17:58:49Z) - FILP-3D: Enhancing 3D Few-shot Class-incremental Learning with
Pre-trained Vision-Language Models [62.663113296987085]
クラス増分学習(class-incremental learning)は、モデルが限られたデータに基づいて漸進的にトレーニングされている場合、破滅的な忘れの問題を軽減することを目的としている。
冗長特徴除去器(RFE)と空間ノイズ補償器(SNC)の2つの新しいコンポーネントを紹介する。
既存の3次元データセットの不均衡を考慮し、3次元FSCILモデルのより微妙な評価を提供する新しい評価指標を提案する。
論文 参考訳(メタデータ) (2023-12-28T14:52:07Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
最近のデータプライバシ法は、機械学習への関心を喚起している。
課題は、残りのデータセットに関する知識を変更することなく、忘れたデータに関する情報を捨てることである。
我々は、プロジェクテッド・グラディエント・アンラーニング(PGU)という、プロジェクテッド・グラディエント・ベースの学習手法を採用する。
トレーニングデータセットがもはやアクセスできない場合でも、スクラッチからスクラッチで再トレーニングされたモデルと同じような振る舞いをするモデルを、我々のアンラーニング手法が生成できることを実証するための実証的な証拠を提供する。
論文 参考訳(メタデータ) (2023-12-07T07:17:24Z) - Efficiently Robustify Pre-trained Models [18.392732966487582]
大規模モデルの現実的な設定に対する堅牢性は、いまだ探索されていないトピックである。
まず、異なる摂動とデータセットの下でこれらのモデルのパフォーマンスをベンチマークします。
続いて、大規模ネットワークにおいて、モデルファインチューニングに基づく既存のロバスト化スキームが拡張性に欠ける可能性について論じる。
論文 参考訳(メタデータ) (2023-09-14T08:07:49Z) - Sample Less, Learn More: Efficient Action Recognition via Frame Feature
Restoration [59.6021678234829]
本稿では,2つのスパースサンプリングおよび隣接するビデオフレームの中間特徴を復元する新しい手法を提案する。
提案手法の統合により, 一般的な3つのベースラインの効率は50%以上向上し, 認識精度は0.5%低下した。
論文 参考訳(メタデータ) (2023-07-27T13:52:42Z) - Part-Based Models Improve Adversarial Robustness [57.699029966800644]
人間の事前知識とエンドツーエンドの学習を組み合わせることで、ディープニューラルネットワークの堅牢性を向上させることができることを示す。
我々のモデルは、部分分割モデルと小さな分類器を組み合わせて、オブジェクトを同時に部品に分割するようにエンドツーエンドに訓練されている。
実験の結果,これらのモデルによりテクスチャバイアスが低減され,一般的な汚職に対する堅牢性が向上し,相関が急上昇することが示唆された。
論文 参考訳(メタデータ) (2022-09-15T15:41:47Z) - What Stops Learning-based 3D Registration from Working in the Real
World? [53.68326201131434]
この研究は、3Dポイントのクラウド登録失敗の原因を特定し、その原因を分析し、解決策を提案する。
最終的に、これは最も実践的な3D登録ネットワーク(BPNet)に変換される。
我々のモデルは微調整をせずに実データに一般化し、商用センサで得られた見えない物体の点雲上で最大67%の精度に達する。
論文 参考訳(メタデータ) (2021-11-19T19:24:27Z) - Point Transformer for Shape Classification and Retrieval of 3D and ALS
Roof PointClouds [3.3744638598036123]
本稿では,リッチポイントクラウド表現の導出を目的とした,完全注意モデルであるem Point Transformerを提案する。
モデルの形状分類と検索性能は,大規模都市データセット - RoofN3D と標準ベンチマークデータセット ModelNet40 で評価される。
提案手法は、RoofN3Dデータセットの他の最先端モデルよりも優れており、ModelNet40ベンチマークで競合する結果を与え、目に見えない点の破損に対して高い堅牢性を示す。
論文 参考訳(メタデータ) (2020-11-08T08:11:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。