論文の概要: PFAttack: Stealthy Attack Bypassing Group Fairness in Federated Learning
- arxiv url: http://arxiv.org/abs/2410.06509v1
- Date: Wed, 9 Oct 2024 03:23:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 05:18:55.541045
- Title: PFAttack: Stealthy Attack Bypassing Group Fairness in Federated Learning
- Title(参考訳): PFAttack:フェデレートラーニングにおけるグループフェアネスをバイパスするステルス攻撃
- Authors: Jiashi Gao, Ziwei Wang, Xiangyu Zhao, Xin Yao, Xuetao Wei,
- Abstract要約: フェデレーテッド・ラーニング(FL)は、異なる集団に対して偏見のない決定を下すグローバルモデルを、クライアントが共同でトレーニングすることを可能にする。
これまでの研究では、FLシステムは毒殺攻撃のモデルに弱いことが示されている。
本研究では,グローバルモデル精度を低下させるのではなく,公平性メカニズムを回避することを目的としたPFATTACK(Profit-driven Fairness Attack)を提案する。
- 参考スコア(独自算出の注目度): 24.746843739848003
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL), integrating group fairness mechanisms, allows multiple clients to collaboratively train a global model that makes unbiased decisions for different populations grouped by sensitive attributes (e.g., gender and race). Due to its distributed nature, previous studies have demonstrated that FL systems are vulnerable to model poisoning attacks. However, these studies primarily focus on perturbing accuracy, leaving a critical question unexplored: Can an attacker bypass the group fairness mechanisms in FL and manipulate the global model to be biased? The motivations for such an attack vary; an attacker might seek higher accuracy, yet fairness considerations typically limit the accuracy of the global model or aim to cause ethical disruption. To address this question, we design a novel form of attack in FL, termed Profit-driven Fairness Attack (PFATTACK), which aims not to degrade global model accuracy but to bypass fairness mechanisms. Our fundamental insight is that group fairness seeks to weaken the dependence of outputs on input attributes related to sensitive information. In the proposed PFATTACK, an attacker can recover this dependence through local fine-tuning across various sensitive groups, thereby creating a biased yet accuracy-preserving malicious model and injecting it into FL through model replacement. Compared to attacks targeting accuracy, PFATTACK is more stealthy. The malicious model in PFATTACK exhibits subtle parameter variations relative to the original global model, making it robust against detection and filtering by Byzantine-resilient aggregations. Extensive experiments on benchmark datasets are conducted for four fair FL frameworks and three Byzantine-resilient aggregations against model poisoning, demonstrating the effectiveness and stealth of PFATTACK in bypassing group fairness mechanisms in FL.
- Abstract(参考訳): グループフェアネスメカニズムを統合するフェデレートラーニング(FL)では、複数のクライアントが、センシティブな属性(性別や人種など)によってグループ化された異なる集団に対して、偏見のない決定を行うグローバルモデルを共同でトレーニングすることができる。
その分散性のため、以前の研究では、FL系は毒殺攻撃のモデルに弱いことが示されている。
しかし、これらの研究は主に摂動精度に重点を置いており、批判的な疑問は未解決のまま残されている: 攻撃者はFL内のグループフェアネスメカニズムをバイパスし、バイアスを受けるグローバルモデルを操作することができるか?
このような攻撃の動機は様々であり、攻撃者はより高い精度を求めるかもしれないが、公平性に関する考慮は通常、グローバルモデルの正確さを制限するか、倫理的破壊を引き起こすことを目的としている。
この問題に対処するため,我々はPFATTACK(Profit-driven Fairness Attack)と呼ばれるFLにおける新たな攻撃形態を設計した。
我々の基本的な洞察は、グループフェアネスは、機密情報に関連する入力属性への出力の依存を弱めようとすることである。
提案したPFATTACKでは、攻撃者は様々な敏感なグループにまたがって局所的な微調整によってこの依存を回復し、バイアスのある正確性を保つ悪意のあるモデルを作成し、モデルの置換によってFLに注入することができる。
PFATTACKは精度を狙った攻撃に比べ、よりステルス性が高い。
PFATTACKの悪意あるモデルは、元のグローバルモデルと比較して微妙なパラメータのばらつきを示し、ビザンチン耐性凝集による検出とフィルタリングに対して堅牢である。
4つのフェアFLフレームワークと3つのビザンチン耐性アグリゲーションに対してベンチマークデータセットの大規模な実験を行い、FLにおけるグループフェアネスメカニズムをバイパスするPFATTACKの有効性とステルスを実証した。
関連論文リスト
- EAB-FL: Exacerbating Algorithmic Bias through Model Poisoning Attacks in Federated Learning [3.699715556687871]
フェデレートラーニング(FL)は、複数のパーティがプライベートデータを開示することなく、共同で共有モデルをトレーニングできる技術である。
FLモデルは、データの異質性や党の選択により、特定の人口集団に対する偏見に悩まされることがある。
そこで本研究では, モデル有効性を維持しつつ, グループ不公平性を高めることを目的とした, 新たなモデル中毒攻撃であるERB-FLを提案する。
論文 参考訳(メタデータ) (2024-10-02T21:22:48Z) - Mitigating Malicious Attacks in Federated Learning via Confidence-aware Defense [3.685395311534351]
Federated Learning(FL)は、分散機械学習ダイアグラムで、複数のクライアントがプライベートなローカルデータを共有せずに、グローバルモデルを協調的にトレーニングすることができる。
FLシステムは、データ中毒やモデル中毒を通じて悪意のあるクライアントで起こっている攻撃に対して脆弱である。
既存の防御方法は通常、特定の種類の中毒を緩和することに焦点を当てており、しばしば目に見えないタイプの攻撃に対して効果がない。
論文 参考訳(メタデータ) (2024-08-05T20:27:45Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated Learning(FL)は、エッジネットワークにおける分散デバイスの共同モデルトレーニングに基づく、プライバシ保護のための分散管理フレームワークである。
近年の研究では、FLは敵の例に弱いことが示されており、その性能は著しく低下している。
本研究では,対戦型訓練(AT)フレームワークを用いて,対戦型実例(AE)攻撃に対するFLモデルの堅牢性を向上させる。
論文 参考訳(メタデータ) (2024-03-05T09:18:29Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - Data-Agnostic Model Poisoning against Federated Learning: A Graph
Autoencoder Approach [65.2993866461477]
本稿では,フェデレートラーニング(FL)に対するデータに依存しないモデル中毒攻撃を提案する。
この攻撃はFLトレーニングデータの知識を必要とせず、有効性と検出不能の両方を達成する。
実験により、FLの精度は提案した攻撃の下で徐々に低下し、既存の防御機構では検出できないことが示された。
論文 参考訳(メタデータ) (2023-11-30T12:19:10Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
フェデレートラーニング(FL)により、分散参加者は、データを中央サーバに直接共有することなく、グローバルモデルをトレーニングできる。
近年の研究では、FLは元のトレーニングサンプルの再構築を目的とした勾配反転攻撃(GIA)に弱いことが判明している。
本稿では,クライアント側から起動可能な新たな攻撃手法であるクライアント側中毒性グレーディエント・インバージョン(CGI)を提案する。
論文 参考訳(メタデータ) (2023-09-14T03:48:27Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - Denial-of-Service or Fine-Grained Control: Towards Flexible Model Poisoning Attacks on Federated Learning [20.737871279189]
フェデレーテッド・ラーニング(FL)は、敵がグローバルアグリゲーションの結果を腐敗させ、DoS(DoS)を否定する有害な攻撃に対して脆弱である。
本稿では,多目的攻撃目標を達成するフレキシブル・モデル・ポジショニング・アタック(FMPA)を提案する。
実験の結果、FMPAは世界の精度を著しく低下させ、最先端の6つの攻撃よりも優れていた。
論文 参考訳(メタデータ) (2023-04-21T07:19:41Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - FL-Defender: Combating Targeted Attacks in Federated Learning [7.152674461313707]
フェデレートラーニング(FL)は、グローバル機械学習モデルを、参加する労働者のセット間で分散されたローカルデータから学習することを可能にする。
FLは、学習モデルの完全性に悪影響を及ぼす標的の毒殺攻撃に対して脆弱である。
FL標的攻撃に対抗する手段として,textitFL-Defenderを提案する。
論文 参考訳(メタデータ) (2022-07-02T16:04:46Z) - FL-WBC: Enhancing Robustness against Model Poisoning Attacks in
Federated Learning from a Client Perspective [35.10520095377653]
Federated Learning(FL)は,中央サーバとエッジデバイス間の反復的な通信を通じてグローバルモデルをトレーニングする,人気のある分散学習フレームワークである。
近年の研究では、FLはモデル中毒攻撃に弱いことが示されている。
我々は、モデル中毒攻撃を軽減できるクライアントベースの防御システム、White Blood Cell for Federated Learning (FL-WBC)を提案する。
論文 参考訳(メタデータ) (2021-10-26T17:13:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。