QuadBEV: An Efficient Quadruple-Task Perception Framework via Bird's-Eye-View Representation
- URL: http://arxiv.org/abs/2410.06516v1
- Date: Wed, 9 Oct 2024 03:31:45 GMT
- Title: QuadBEV: An Efficient Quadruple-Task Perception Framework via Bird's-Eye-View Representation
- Authors: Yuxin Li, Yiheng Li, Xulei Yang, Mengying Yu, Zihang Huang, Xiaojun Wu, Chai Kiat Yeo,
- Abstract summary: Bird's-Eye-View (BEV) perception has become a vital component of autonomous driving systems due to its ability to integrate multiple sensor inputs into a unified representation.
We propose QuadBEV, an efficient multitask perception framework that leverages the shared spatial and contextual information across four key tasks.
We present comprehensive experiments that validate the effectiveness and robustness of QuadBEV, demonstrating its suitability for real-world applications.
- Score: 11.074747442071729
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Bird's-Eye-View (BEV) perception has become a vital component of autonomous driving systems due to its ability to integrate multiple sensor inputs into a unified representation, enhancing performance in various downstream tasks. However, the computational demands of BEV models pose challenges for real-world deployment in vehicles with limited resources. To address these limitations, we propose QuadBEV, an efficient multitask perception framework that leverages the shared spatial and contextual information across four key tasks: 3D object detection, lane detection, map segmentation, and occupancy prediction. QuadBEV not only streamlines the integration of these tasks using a shared backbone and task-specific heads but also addresses common multitask learning challenges such as learning rate sensitivity and conflicting task objectives. Our framework reduces redundant computations, thereby enhancing system efficiency, making it particularly suited for embedded systems. We present comprehensive experiments that validate the effectiveness and robustness of QuadBEV, demonstrating its suitability for real-world applications.
Related papers
- BEVPose: Unveiling Scene Semantics through Pose-Guided Multi-Modal BEV Alignment [8.098296280937518]
We present BEVPose, a framework that integrates BEV representations from camera and lidar data, using sensor pose as a guiding supervisory signal.
By leveraging pose information, we align and fuse multi-modal sensory inputs, facilitating the learning of latent BEV embeddings that capture both geometric and semantic aspects of the environment.
arXiv Detail & Related papers (2024-10-28T12:40:27Z) - Learning Content-Aware Multi-Modal Joint Input Pruning via Bird's-Eye-View Representation [11.074747442071729]
We introduce a novel content-aware multi-modal joint input pruning technique.
We validatethe efficacy of our approach through extensive experiments on the NuScenes dataset.
arXiv Detail & Related papers (2024-10-09T03:30:00Z) - MaskBEV: Towards A Unified Framework for BEV Detection and Map Segmentation [14.67253585778639]
MaskBEV is a masked attention-based multi-task learning paradigm.
It unifies 3D object detection and bird's eye view (BEV) map segmentation.
It achieves 1.3 NDS improvement in 3D object detection and 2.7 mIoU improvement in BEV map segmentation.
arXiv Detail & Related papers (2024-08-17T07:11:38Z) - RepVF: A Unified Vector Fields Representation for Multi-task 3D Perception [64.80760846124858]
This paper proposes a novel unified representation, RepVF, which harmonizes the representation of various perception tasks.
RepVF characterizes the structure of different targets in the scene through a vector field, enabling a single-head, multi-task learning model.
Building upon RepVF, we introduce RFTR, a network designed to exploit the inherent connections between different tasks.
arXiv Detail & Related papers (2024-07-15T16:25:07Z) - DA-BEV: Unsupervised Domain Adaptation for Bird's Eye View Perception [104.87876441265593]
Camera-only Bird's Eye View (BEV) has demonstrated great potential in environment perception in a 3D space.
Unsupervised domain adaptive BEV, which effective learning from various unlabelled target data, is far under-explored.
We design DA-BEV, the first domain adaptive camera-only BEV framework that addresses domain adaptive BEV challenges by exploiting the complementary nature of image-view features and BEV features.
arXiv Detail & Related papers (2024-01-13T04:21:24Z) - A Dynamic Feature Interaction Framework for Multi-task Visual Perception [100.98434079696268]
We devise an efficient unified framework to solve multiple common perception tasks.
These tasks include instance segmentation, semantic segmentation, monocular 3D detection, and depth estimation.
Our proposed framework, termed D2BNet, demonstrates a unique approach to parameter-efficient predictions for multi-task perception.
arXiv Detail & Related papers (2023-06-08T09:24:46Z) - OCBEV: Object-Centric BEV Transformer for Multi-View 3D Object Detection [29.530177591608297]
Multi-view 3D object detection is becoming popular in autonomous driving due to its high effectiveness and low cost.
Most of the current state-of-the-art detectors follow the query-based bird's-eye-view (BEV) paradigm.
We propose an Object-Centric query-BEV detector OCBEV, which can carve the temporal and spatial cues of moving targets more effectively.
arXiv Detail & Related papers (2023-06-02T17:59:48Z) - Visual Exemplar Driven Task-Prompting for Unified Perception in
Autonomous Driving [100.3848723827869]
We present an effective multi-task framework, VE-Prompt, which introduces visual exemplars via task-specific prompting.
Specifically, we generate visual exemplars based on bounding boxes and color-based markers, which provide accurate visual appearances of target categories.
We bridge transformer-based encoders and convolutional layers for efficient and accurate unified perception in autonomous driving.
arXiv Detail & Related papers (2023-03-03T08:54:06Z) - CoBEVT: Cooperative Bird's Eye View Semantic Segmentation with Sparse
Transformers [36.838065731893735]
CoBEVT is the first generic multi-agent perception framework that can cooperatively generate BEV map predictions.
CoBEVT achieves state-of-the-art performance for cooperative BEV semantic segmentation.
arXiv Detail & Related papers (2022-07-05T17:59:28Z) - BEVerse: Unified Perception and Prediction in Birds-Eye-View for
Vision-Centric Autonomous Driving [92.05963633802979]
We present BEVerse, a unified framework for 3D perception and prediction based on multi-camera systems.
We show that the multi-task BEVerse outperforms single-task methods on 3D object detection, semantic map construction, and motion prediction.
arXiv Detail & Related papers (2022-05-19T17:55:35Z) - M^2BEV: Multi-Camera Joint 3D Detection and Segmentation with Unified
Birds-Eye View Representation [145.6041893646006]
M$2$BEV is a unified framework that jointly performs 3D object detection and map segmentation.
M$2$BEV infers both tasks with a unified model and improves efficiency.
arXiv Detail & Related papers (2022-04-11T13:43:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.