Experimental single-copy distillation of quantumness from higher-dimensional entanglement
- URL: http://arxiv.org/abs/2410.06610v1
- Date: Wed, 9 Oct 2024 07:04:55 GMT
- Title: Experimental single-copy distillation of quantumness from higher-dimensional entanglement
- Authors: Xiao-Xu Fang, Gelo Noel M. Tabia, Kai-Siang Chen, Yeong-Cherng Liang, He Lu,
- Abstract summary: Entanglement is at the heart of quantum theory and is responsible for various quantum-enabling technologies.
We experimentally demonstrate how one may use single-copy local filtering operations to meet this requirement.
Results provide the first proof-of-principle experimental certification of the Bell-nonlocal properties of entangled states.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Entanglement is at the heart of quantum theory and is responsible for various quantum-enabling technologies. In practice, during its preparation, storage, and distribution to the intended recipients, this valuable quantum resource may suffer from noisy interactions that reduce its usefulness for the desired information-processing tasks. Conventional schemes of entanglement distillation aim to alleviate this problem by performing collective operations on multiple copies of these decohered states and sacrificing some of them to recover Bell pairs. However, for this scheme to work, the states to be distilled should already contain a large enough fraction of maximally entangled states before these collective operations. Not all entangled quantum states meet this premise. Here, by using the paradigmatic family of two-qutrit Werner states as an exemplifying example, we experimentally demonstrate how one may use single-copy local filtering operations to meet this requirement and to recover the quantumness hidden in these higher-dimensional states. Among others, our results provide the first proof-of-principle experimental certification of the Bell-nonlocal properties of these intriguing entangled states, the activation of their usefulness for quantum teleportation, dense coding, and an enhancement of their quantum steerability, and hence usefulness for certain discrimination tasks. Our theoretically established lower bounds on the steering robustness of these states, when they admit a symmetric quasiextension or a bosonic symmetric extension, and when they show hidden dense-codability may also be of independent interest.
Related papers
- Quantum steering from phase measurements with limited resources [0.20616237122336117]
Quantum steering captures the ability of one party, Alice, to control through quantum correlations the state at a distant location.
Our results provide guidelines to apply such a metrological approach to the validation of quantum channels.
arXiv Detail & Related papers (2024-01-30T20:37:00Z) - The power of noisy quantum states and the advantage of resource dilution [62.997667081978825]
Entanglement distillation allows to convert noisy quantum states into singlets.
We show that entanglement dilution can increase the resilience of shared quantum states to local noise.
arXiv Detail & Related papers (2022-10-25T17:39:29Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Suppressing decoherence in quantum state transfer with unitary
operations [1.9662978733004601]
We study an application of quantum state-dependent pre- and post-processing unitary operations for protecting the given (multi-qubit) quantum state.
We observe the increase in the fidelity of the output quantum state both in a quantum emulation experiment and in a real experiment with a cloud-accessible quantum processor.
arXiv Detail & Related papers (2022-08-09T17:41:20Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - A perspective on few-copy entanglement detection in experiments [0.0]
An overview is provided of a probabilistic approach that enables high-confidence genuine multipartite entanglement detection.
A study is presented that shows that this protocol remains efficient also in the presence of noise.
arXiv Detail & Related papers (2022-01-07T19:01:07Z) - Experimental quantum advantage with quantum coupon collector [10.81907025584207]
We introduce and analyse a quantum coupon collector protocol by employing coherent states and simple linear optical elements.
We show that our protocol can significantly reduce the number of samples needed to learn a specific set compared with the classical limit of the coupon collector problem.
We also discuss the potential values and expansions of the quantum coupon collector by constructing a quantum blind box game.
arXiv Detail & Related papers (2021-12-15T04:54:47Z) - Heterogeneous Multipartite Entanglement Purification for
Size-Constrained Quantum Devices [68.8204255655161]
Purifying entanglement resources after their imperfect generation is an indispensable step towards using them in quantum architectures.
Here we depart from the typical purification paradigm for multipartite states explored in the last twenty years.
We find that smaller sacrificial' states, like Bell pairs, can be more useful in the purification of multipartite states than additional copies of these same states.
arXiv Detail & Related papers (2020-11-23T19:00:00Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z) - Quantifying the unextendibility of entanglement [13.718093420358827]
Entanglement is a striking feature of quantum mechanics, and it has a key property called unextendibility.
We present a framework for quantifying and investigating the unextendibility of general bipartite quantum states.
arXiv Detail & Related papers (2019-11-18T05:22:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.