論文の概要: Task-oriented Time Series Imputation Evaluation via Generalized Representers
- arxiv url: http://arxiv.org/abs/2410.06652v2
- Date: Thu, 10 Oct 2024 04:16:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 04:29:49.580603
- Title: Task-oriented Time Series Imputation Evaluation via Generalized Representers
- Title(参考訳): 一般化表現器によるタスク指向時系列インプット評価
- Authors: Zhixian Wang, Linxiao Yang, Liang Sun, Qingsong Wen, Yi Wang,
- Abstract要約: 時系列分析は電力エネルギー、経済、輸送など多くの分野で広く利用されている。
本稿では,効率的なダウンストリームタスク指向時系列計算評価手法を提案する。
- 参考スコア(独自算出の注目度): 23.53722963890861
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series analysis is widely used in many fields such as power energy, economics, and transportation, including different tasks such as forecasting, anomaly detection, classification, etc. Missing values are widely observed in these tasks, and often leading to unpredictable negative effects on existing methods, hindering their further application. In response to this situation, existing time series imputation methods mainly focus on restoring sequences based on their data characteristics, while ignoring the performance of the restored sequences in downstream tasks. Considering different requirements of downstream tasks (e.g., forecasting), this paper proposes an efficient downstream task-oriented time series imputation evaluation approach. By combining time series imputation with neural network models used for downstream tasks, the gain of different imputation strategies on downstream tasks is estimated without retraining, and the most favorable imputation value for downstream tasks is given by combining different imputation strategies according to the estimated gain.
- Abstract(参考訳): 時系列分析は、電力エネルギー、経済、輸送など多くの分野で広く使われており、予測、異常検出、分類など様々なタスクがある。
欠落値はこれらのタスクで広く見られ、しばしば既存のメソッドに予測不可能なネガティブな影響をもたらし、それらのさらなる適用を妨げる。
このような状況に対して、既存の時系列計算手法は、主にデータ特性に基づくシーケンスの復元に焦点を合わせ、下流タスクにおける復元シーケンスのパフォーマンスを無視する。
本稿では、下流タスクの異なる要件(例えば予測)を考慮して、効率的な下流タスク指向時系列計算手法を提案する。
下流タスクに使用される時系列計算とニューラルネットワークモデルを組み合わせることにより、下流タスクに対する異なる計算戦略のゲインを再トレーニングすることなく推定し、推定ゲインに応じて異なる計算戦略を組み合わせることにより、下流タスクに対する最も好ましい計算値を与える。
関連論文リスト
- TSI-Bench: Benchmarking Time Series Imputation [52.27004336123575]
TSI-Benchは、ディープラーニング技術を利用した時系列計算のための総合ベンチマークスイートである。
TSI-Benchパイプラインは、実験的な設定を標準化し、計算アルゴリズムの公平な評価を可能にする。
TSI-Benchは、計算目的のために時系列予測アルゴリズムを調整するための体系的なパラダイムを革新的に提供する。
論文 参考訳(メタデータ) (2024-06-18T16:07:33Z) - Deep Learning for Multivariate Time Series Imputation: A Survey [36.72913706617057]
本稿では,最近提案されたディープラーニング計算手法に関する総合的な調査を行う。
本稿では,本手法の分類法を提案し,その強度と限界を明らかにすることによって,これらの手法の構造化されたレビューを行う。
また、異なる手法の研究や下流タスクの強化を比較するための実証実験も行います。
論文 参考訳(メタデータ) (2024-02-06T15:03:53Z) - Filling out the missing gaps: Time Series Imputation with
Semi-Supervised Learning [7.8379910349669]
本稿では,ラベルなしデータと下流タスクのラベル付きデータの両方を利用する半教師付き計算手法ST-Imputeを提案する。
ST-Imputeはスパース自己注意に基づいており、計算過程を模倣するタスクを訓練する。
論文 参考訳(メタデータ) (2023-04-09T16:38:47Z) - A Comprehensive Survey of Regression Based Loss Functions for Time
Series Forecasting [0.0]
時系列予測によく用いられる14のよく知られた回帰損失関数を要約した。
私たちのコードはGitHubで入手できる。 https://github.com/aryan-jadon/Regression-Loss-Functions-in-Time-Series-Forecasting-Tensorflow。
論文 参考訳(メタデータ) (2022-11-05T23:06:25Z) - Spatio-temporal predictive tasks for abnormal event detection in videos [60.02503434201552]
オブジェクトレベルの正規化パターンを学習するための制約付きプレテキストタスクを提案する。
我々のアプローチは、ダウンスケールの視覚的クエリとそれに対応する正常な外観と運動特性のマッピングを学習することである。
いくつかのベンチマークデータセットの実験では、異常の局所化と追跡のためのアプローチの有効性が示されている。
論文 参考訳(メタデータ) (2022-10-27T19:45:12Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
シーケンシャルなイベント予測の目標は、一連の歴史的なイベントに基づいて次のイベントを見積もることである。
実際には、次のイベント予測モデルは、一度に収集されたシーケンシャルなデータで訓練される。
文脈固有の表現を学習するための階層的な分岐構造を持つフレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-24T07:54:13Z) - STING: Self-attention based Time-series Imputation Networks using GAN [4.052758394413726]
GANを用いたSING(Self-attention based Time-Series Imputation Networks)を提案する。
我々は、時系列の潜在表現を学習するために、生成的対向ネットワークと双方向リカレントニューラルネットワークを利用する。
3つの実世界のデータセットによる実験結果から、STINGは既存の最先端手法よりも計算精度が優れていることが示された。
論文 参考訳(メタデータ) (2022-09-22T06:06:56Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - NRTSI: Non-Recurrent Time Series Imputation for Irregularly-sampled Data [14.343059464246425]
時系列計算は、欠落したデータで時系列を理解するための基本的なタスクである。
再帰モジュールを持たない新しい計算モデル NRTSI を提案する。
NRTSIは不規則にサンプリングされたデータを容易に処理でき、多重モードの計算を行い、次元が部分的に観察されるシナリオを処理できる。
論文 参考訳(メタデータ) (2021-02-05T18:41:25Z) - Temporally Correlated Task Scheduling for Sequence Learning [143.70523777803723]
多くのアプリケーションにおいて、シーケンス学習タスクは通常、複数の時間的に相関した補助タスクと関連付けられている。
シーケンス学習に学習可能なスケジューラを導入し、トレーニングのための補助的なタスクを適応的に選択できる。
本手法は,同時翻訳とストックトレンド予測の性能を著しく向上させる。
論文 参考訳(メタデータ) (2020-07-10T10:28:54Z) - Clinical Risk Prediction with Temporal Probabilistic Asymmetric
Multi-Task Learning [80.66108902283388]
マルチタスク学習手法は、臨床リスク予測などの安全クリティカルな応用に注意を払って使用すべきである。
既存の非対称なマルチタスク学習手法は、低損失のタスクから高損失のタスクへの知識伝達を行うことにより、この負の伝達問題に対処する。
特徴レベルの不確実性に基づいて,特定のタスク/タイムステップから関連する不確実なタスクへの知識伝達を行う,新しい時間的非対称型マルチタスク学習モデルを提案する。
論文 参考訳(メタデータ) (2020-06-23T06:01:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。