論文の概要: Evaluating Computational Pathology Foundation Models for Prostate Cancer Grading under Distribution Shifts
- arxiv url: http://arxiv.org/abs/2410.06723v1
- Date: Wed, 9 Oct 2024 09:45:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 04:00:11.259721
- Title: Evaluating Computational Pathology Foundation Models for Prostate Cancer Grading under Distribution Shifts
- Title(参考訳): 分布変化下における前立腺がん診断のための計算病理学的基礎モデルの評価
- Authors: Fredrik K. Gustafsson, Mattias Rantalainen,
- Abstract要約: UNI (10万枚以上) と CONCH (1100万枚以上) の2つの計算病理基盤モデルを評価する。
UNIとCONCHはベースラインとよく比較できるが、絶対的な性能は特定の設定ではあまり満足できない。
- 参考スコア(独自算出の注目度): 3.2995359570845912
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Foundation models have recently become a popular research direction within computational pathology. They are intended to be general-purpose feature extractors, promising to achieve good performance on a range of downstream tasks. Real-world pathology image data does however exhibit considerable variability. Foundation models should be robust to these variations and other distribution shifts which might be encountered in practice. We evaluate two computational pathology foundation models: UNI (trained on more than 100,000 whole-slide images) and CONCH (trained on more than 1.1 million image-caption pairs), by utilizing them as feature extractors within prostate cancer grading models. We find that while UNI and CONCH perform well relative to baselines, the absolute performance can still be far from satisfactory in certain settings. The fact that foundation models have been trained on large and varied datasets does not guarantee that downstream models always will be robust to common distribution shifts.
- Abstract(参考訳): 基礎モデルは近年、計算病理学における一般的な研究方向となっている。
それらは汎用的な特徴抽出器を意図しており、下流のタスクで優れたパフォーマンスを達成することを約束している。
しかし、実世界の病理画像データにはかなりのばらつきがある。
基礎モデルは、実際に遭遇する可能性のあるこれらのバリエーションや他の分散シフトに対して堅牢であるべきである。
UNI(100,000枚以上)とCONCH(1,100万枚以上)の2つの計算病理基盤モデルを前立腺癌評価モデルの特徴抽出器として利用して評価した。
UNIとCONCHはベースラインとよく比較できるが、絶対的な性能は特定の設定ではあまり満足できない。
ファンデーションモデルが大規模で多様なデータセットでトレーニングされているという事実は、ダウンストリームモデルが常に共通の分散シフトに対して堅牢であることを保証するものではない。
関連論文リスト
- Weakly supervised deep learning model with size constraint for prostate cancer detection in multiparametric MRI and generalization to unseen domains [0.90668179713299]
本モデルでは, 完全教師付きベースラインモデルにより, オンパー性能が向上することを示す。
また、未確認データドメインでテストした場合、完全に教師付きモデルと弱い教師付きモデルの両方のパフォーマンス低下も観察する。
論文 参考訳(メタデータ) (2024-11-04T12:24:33Z) - Phikon-v2, A large and public feature extractor for biomarker prediction [42.52549987351643]
我々は、DINOv2を用いて視覚変換器を訓練し、このモデルの1つのイテレーションを公開して、Phikon-v2と呼ばれるさらなる実験を行う。
Phikon-v2は、公開されている組織学のスライドをトレーニングしながら、以前リリースしたモデル(Phikon)を上回り、プロプライエタリなデータでトレーニングされた他の病理学基盤モデル(FM)と同等に動作します。
論文 参考訳(メタデータ) (2024-09-13T20:12:29Z) - A Comprehensive Evaluation of Histopathology Foundation Models for Ovarian Cancer Subtype Classification [1.9499122087408571]
病理組織学の基礎モデルは、多くのタスクにまたがる大きな約束を示している。
これまでで最も厳格な単一タスクによる病理組織学的基盤モデルの検証を報告した。
病理組織学的基盤モデルは卵巣がんの亜型化に明確な利益をもたらす。
論文 参考訳(メタデータ) (2024-05-16T11:21:02Z) - On the Out of Distribution Robustness of Foundation Models in Medical
Image Segmentation [47.95611203419802]
視覚と言語の基礎は、様々な自然画像とテキストデータに基づいて事前訓練されており、有望なアプローチとして現れている。
一般化性能を,同じ分布データセット上で微調整した後,事前学習した各種モデルの未確認領域と比較した。
さらに,凍結モデルに対する新しいベイズ不確実性推定法を開発し,分布外データに基づくモデルの性能評価指標として利用した。
論文 参考訳(メタデータ) (2023-11-18T14:52:10Z) - Generalized Logit Adjustment: Calibrating Fine-tuned Models by Removing Label Bias in Foundation Models [75.9543301303586]
CLIPのようなファンデーションモデルは、追加のトレーニングデータなしで、さまざまなタスクでゼロショット転送を可能にする。
微調整やアンサンブルも一般的に下流のタスクに合うように採用されている。
しかし、先行研究は基礎モデルに固有のバイアスを見落としていると論じる。
論文 参考訳(メタデータ) (2023-10-12T08:01:11Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
本稿では,アクセル時間で測定された等価計算に基づくモデル比較を可能にする実験的プロトコルを提案する。
私たちは、既存の学術的ベンチマークを上回り、品質、多様性、文書の長さで上回る、大規模で多様で高品質な書籍データセットを前処理します。
この研究は、GPT-2アーキテクチャから派生したフィードフォワードモデルと、10倍のスループットを持つ新しいLSTMの形式でのリカレントモデルという2つのベースラインモデルも提供する。
論文 参考訳(メタデータ) (2023-09-20T10:31:17Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
基礎モデルを用いた最先端UniDA手法の実証的研究を行った。
CLIPモデルからターゲット知識を抽出するためのパラメータフリーな手法であるtextitCLIP 蒸留を導入する。
単純な手法ではあるが、ほとんどのベンチマークタスクでは従来の手法よりも優れている。
論文 参考訳(メタデータ) (2023-05-18T16:28:29Z) - Realistic Data Enrichment for Robust Image Segmentation in
Histopathology [2.248423960136122]
拡散モデルに基づく新しい手法を提案し、不均衡なデータセットを、表現不足なグループから有意な例で拡張する。
本手法は,限定的な臨床データセットを拡張して,機械学習パイプラインのトレーニングに適したものにする。
論文 参考訳(メタデータ) (2023-04-19T09:52:50Z) - Accuracy on the Line: On the Strong Correlation Between
Out-of-Distribution and In-Distribution Generalization [89.73665256847858]
分布外性能は,広範囲なモデルと分布シフトに対する分布内性能と強く相関していることを示す。
具体的には,CIFAR-10 と ImageNet の変種に対する分布内分布と分布外分布性能の強い相関関係を示す。
また,CIFAR-10-Cと組織分類データセットCamelyon17-WILDSの合成分布の変化など,相関が弱いケースについても検討した。
論文 参考訳(メタデータ) (2021-07-09T19:48:23Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。