論文の概要: K-SAM: A Prompting Method Using Pretrained U-Net to Improve Zero Shot Performance of SAM on Lung Segmentation in CXR Images
- arxiv url: http://arxiv.org/abs/2410.06825v1
- Date: Wed, 9 Oct 2024 12:37:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 03:21:00.755883
- Title: K-SAM: A Prompting Method Using Pretrained U-Net to Improve Zero Shot Performance of SAM on Lung Segmentation in CXR Images
- Title(参考訳): K-SAM: CXR画像におけるSAMのゼロショット性能向上のための事前訓練U-Netを用いたプロンプト手法
- Authors: Mohamed Deriche, Mohammad Marufur,
- Abstract要約: 肺領域分割作業におけるSAMのゼロショット性能を自動的プロンプト選択により向上させるアルゴリズムを提案する。
提案手法は,事前学習したモデルを用いて迅速な選択を行うことで,SAMの印象的な一般化能力を最大限に活用できることを示唆する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In clinical procedures, precise localization of the target area is an essential step for clinical diagnosis and screening. For many diagnostic applications, lung segmentation of chest X-ray images is an essential first step that significantly reduces the image size to speed up the subsequent analysis. One of the primary difficulties with this task is segmenting the lung regions covered by dense abnormalities also known as opacities due to diseases like pneumonia and tuberculosis. SAM has astonishing generalization capabilities for category agnostic segmentation. In this study we propose an algorithm to improve zero shot performance of SAM on lung region segmentation task by automatic prompt selection. Two separate UNet models were trained, one for predicting lung segments and another for heart segment. Though these predictions lack fine details around the edges, they provide positive and negative points as prompt for SAM. Using proposed prompting method zero shot performance of SAM is evaluated on two benchmark datasets. ViT-l version of the model achieved slightly better performance compared to other two versions, ViTh and ViTb. It yields an average Dice score of 95.5 percent and 94.9 percent on hold out data for two datasets respectively. Though, for most of the images, SAM did outstanding segmentation, its prediction was way off for some of the images. After careful inspection it is found that all of these images either had extreme abnormality or distorted shape. Unlike most of the research performed so far on lung segmentation from CXR images using SAM, this study proposes a fully automated prompt selection process only from the input image. Our finding indicates that using pretrained models for prompt selection can utilize SAM impressive generalization capability to its full extent.
- Abstract(参考訳): 臨床手術では,対象領域の正確な局在化が臨床診断およびスクリーニングに必須のステップである。
多くの診断応用において、胸部X線像の肺分画は、画像サイズを大幅に減らし、その後の解析を高速化する重要な第一歩である。
この作業の主な課題の1つは、肺炎や結核などの病気によって、不透明と呼ばれる高濃度の異常で覆われた肺領域を分断することである。
SAMはカテゴリ非依存のセグメンテーションのための驚くべき一般化能力を持っている。
本研究では,肺領域分割作業におけるSAMのゼロショット性能を自動的プロンプト選択により向上させるアルゴリズムを提案する。
2つの異なるUNetモデルがトレーニングされ、1つは肺セグメントを予測し、もう1つは心臓セグメントを予測した。
これらの予測はエッジに関する詳細な詳細を欠いているが、SAMのプロンプトとして正および負の点を提供する。
提案手法を用いて、SAMのゼロショット性能を2つのベンチマークデータセットで評価した。
ViT-lはViThとViTbの2モデルに比べて若干性能が向上した。
平均的なDiceスコアは95.5%と94.9%である。
しかし、ほとんどの画像においてSAMは際立ったセグメンテーションを行い、その予測は一部の画像にはほど遠いものだった。
注意深い検査の結果,これらの画像はいずれも異常あるいは歪んだ形状であった。
SAMを用いたCXR画像からの肺の分画に関するこれまでの研究とは異なり、本研究では入力画像のみから完全に自動的なプロンプト選択プロセスを提案する。
提案手法は,事前学習モデルを用いて迅速な選択を行うことができ,SAMの精度の高い一般化能力を最大限に活用できることを示す。
関連論文リスト
- Exploiting the Segment Anything Model (SAM) for Lung Segmentation in Chest X-ray Images [0.8192907805418583]
Segment Anything Model (SAM) は、ある画像内の個々のオブジェクトを意味論的解釈によって識別し、分離するために設計された野心的なツールである。
何人かの研究者が、この領域のパフォーマンスを評価するために、このモデルを医療画像上でテストし始めた。
本研究は胸部X線画像の評価と研究にこの新技術を用いることを提案する。
論文 参考訳(メタデータ) (2024-11-05T12:54:01Z) - SAM2CLIP2SAM: Vision Language Model for Segmentation of 3D CT Scans for Covid-19 Detection [16.1664846590467]
本稿では,任意のモデルや手法に統合可能な画像の効果的セグメンテーションのための新しいアプローチを提案する。
私たちのアプローチには、CTスキャンをセグメント化する視覚言語モデルの組み合わせが含まれています。
提案手法をCTスキャンのセグメンテーションに用いた場合の性能向上を示す2つのCovid-19アノテートデータベースに対して実験を行った。
論文 参考訳(メタデータ) (2024-07-22T15:31:18Z) - Improving Segment Anything on the Fly: Auxiliary Online Learning and Adaptive Fusion for Medical Image Segmentation [52.172885882728174]
医療画像の文脈では、SAMがそのセグメンテーション予測を生成した後、人間の専門家が特定のテストサンプルのセグメンテーションを修正することは珍しくない。
我々は、オンライン機械学習の利点を活用して、テスト期間中にSegment Anything(SA)を強化する新しいアプローチを導入する。
医用画像におけるSAのセグメンテーション品質を改善することを目的として,オンライン学習のための修正アノテーションを用いた。
論文 参考訳(メタデータ) (2024-06-03T03:16:25Z) - I-MedSAM: Implicit Medical Image Segmentation with Segment Anything [24.04558900909617]
提案するI-MedSAMは、連続表現とSAMの両方の利点を利用して、クロスドメイン能力と正確な境界線を求める。
トレーニング可能なパラメータが1.6Mしかない提案手法は、離散的および暗黙的を含む既存の手法よりも優れている。
論文 参考訳(メタデータ) (2023-11-28T00:43:52Z) - nnSAM: Plug-and-play Segment Anything Model Improves nnUNet Performance [12.169801149021566]
Segment Anything Model (SAM)は、特定のドメイントレーニングなしで画像セグメンテーションのための汎用ツールとして登場した。
nnUNetのような従来のモデルは推論中に自動セグメンテーションを実行するが、広範なドメイン固有のトレーニングが必要である。
提案するnnSAMは,SAMの頑健な特徴抽出とnnUNetの自動構成を統合し,小さなデータセットのセグメンテーション精度を向上させる。
論文 参考訳(メタデータ) (2023-09-29T04:26:25Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
我々はMA-SAMと命名されたモダリティに依存しないSAM適応フレームワークを提案する。
本手法は,重量増加のごく一部だけを更新するためのパラメータ効率の高い微調整戦略に根ざしている。
画像エンコーダのトランスバータブロックに一連の3Dアダプタを注入することにより,事前学習した2Dバックボーンが入力データから3次元情報を抽出することができる。
論文 参考訳(メタデータ) (2023-09-16T02:41:53Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
医用画像の領域分割を行うために, SAMを2次元から3次元に変換する新しい適応法を提案する。
本モデルでは, 腎腫瘍, 膵腫瘍, 大腸癌の3つのタスクのうち8.25%, 29.87%, 10.11%の3つのタスクにおいて, ドメイン・オブ・ザ・アーティヴ・メディカル・イメージ・セグメンテーション・モデルより優れ, 肝腫瘍セグメンテーションでも同様の性能が得られる。
論文 参考訳(メタデータ) (2023-06-23T12:09:52Z) - Segment Anything Model for Medical Image Analysis: an Experimental Study [19.95972201734614]
Segment Anything Model (SAM) は、ユーザ定義オブジェクトをインタラクティブな方法でセグメント化する基礎モデルである。
SAMの医用画像の分類能力について,各種のモダリティと解剖から,19の医用画像データセットの集合体を用いて評価した。
論文 参考訳(メタデータ) (2023-04-20T17:50:18Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - Cascaded Robust Learning at Imperfect Labels for Chest X-ray
Segmentation [61.09321488002978]
不完全アノテーションを用いた胸部X線分割のための新しいカスケードロバスト学習フレームワークを提案する。
モデルは3つの独立したネットワークから成り,ピアネットワークから有用な情報を効果的に学習できる。
提案手法は,従来の手法と比較して,セグメント化タスクの精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2021-04-05T15:50:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。