論文の概要: SurANet: Surrounding-Aware Network for Concealed Object Detection via Highly-Efficient Interactive Contrastive Learning Strategy
- arxiv url: http://arxiv.org/abs/2410.06842v1
- Date: Wed, 9 Oct 2024 13:02:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 03:21:00.736150
- Title: SurANet: Surrounding-Aware Network for Concealed Object Detection via Highly-Efficient Interactive Contrastive Learning Strategy
- Title(参考訳): SurANet:高能率対話型コントラスト学習戦略による物体検出のための周辺認識ネットワーク
- Authors: Yuhan Kang, Qingpeng Li, Leyuan Fang, Jian Zhao, Xuelong Li,
- Abstract要約: 本稿では,隠蔽物体検出のための新しいSurrounding-Aware Network,すなわちSurANetを提案する。
周辺特徴の差分融合を用いて特徴写像のセマンティクスを強化し,隠蔽対象の強調を行う。
次に、周囲の特徴写像を対照的に学習することで隠蔽対象を識別するために、周囲のコントラストロスを適用した。
- 参考スコア(独自算出の注目度): 55.570183323356964
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Concealed object detection (COD) in cluttered scenes is significant for various image processing applications. However, due to that concealed objects are always similar to their background, it is extremely hard to distinguish them. Here, the major obstacle is the tiny feature differences between the inside and outside object boundary region, which makes it trouble for existing COD methods to achieve accurate results. In this paper, considering that the surrounding environment information can be well utilized to identify the concealed objects, and thus, we propose a novel deep Surrounding-Aware Network, namely SurANet, for COD tasks, which introduces surrounding information into feature extraction and loss function to improve the discrimination. First, we enhance the semantics of feature maps using differential fusion of surrounding features to highlight concealed objects. Next, a Surrounding-Aware Contrastive Loss is applied to identify the concealed object via learning surrounding feature maps contrastively. Then, SurANet can be trained end-to-end with high efficiency via our proposed Spatial-Compressed Correlation Transmission strategy after our investigation of feature dynamics, and extensive experiments improve that such features can be well reserved respectively. Finally, experimental results demonstrate that the proposed SurANet outperforms state-of-the-art COD methods on multiple real datasets. Our source code will be available at https://github.com/kyh433/SurANet.
- Abstract(参考訳): 乱れ場面における物体検出(COD)は,様々な画像処理アプリケーションにおいて重要である。
しかし、その隠蔽物は、常にその背景と似ているため、区別するのは極めて困難である。
ここでの大きな障害は、内部と外部の境界領域の小さな特徴差であり、既存のCOD法では正確な結果が得られない。
本稿では, 環境情報をうまく利用して隠蔽対象を識別できることを考慮し, 特徴抽出・損失機能に周辺情報を導入し, 識別を改善するための, CODタスクのためのディープ・サラウンド・アウェア・ネットワーク(SurANet)を提案する。
まず,周辺特徴の差分融合を用いて特徴写像のセマンティクスを強化し,隠蔽対象の強調を行う。
次に、周囲の特徴写像を対照的に学習することで隠蔽対象を識別するために、周囲のコントラストロスを適用した。
次に、SurANetは、特徴力学の調査後、提案した空間圧縮相関伝送戦略により、エンドツーエンドで高い効率で訓練することができる。
最後に、提案したSurANetは、複数の実データセット上で最先端のCOD法より優れていることを示す。
ソースコードはhttps://github.com/kyh433/SurANet.comで公開されます。
関連論文リスト
- Hierarchical Graph Interaction Transformer with Dynamic Token Clustering for Camouflaged Object Detection [57.883265488038134]
本稿では,HGINetと呼ばれる階層的なグラフ相互作用ネットワークを提案する。
このネットワークは、階層的トークン化機能間の効果的なグラフ相互作用を通じて、知覚不能なオブジェクトを発見することができる。
本実験は,既存の最先端手法と比較して,HGINetの優れた性能を示すものである。
論文 参考訳(メタデータ) (2024-08-27T12:53:25Z) - Adaptive Guidance Learning for Camouflaged Object Detection [23.777432551429396]
本稿では,適応型誘導学習ネットワーク「textitAGLNet」を提案する。
広く使用されている3つのCODベンチマークデータセットの実験により,提案手法が大幅な性能向上を実現することが示された。
論文 参考訳(メタデータ) (2024-05-05T06:21:58Z) - Spatial Coherence Loss: All Objects Matter in Salient and Camouflaged Object Detection [3.03995893427722]
正確な意味分析を行うには、学習のどの段階でも現れる全てのオブジェクトレベルの予測を学習する必要がある。
本稿では,隣接画素間の相互応答を広範に使用する単一応答損失関数に組み込んだ新しい損失関数である空間コヒーレンス損失(SCLoss)を提案する。
論文 参考訳(メタデータ) (2024-02-28T20:27:49Z) - ZoomNeXt: A Unified Collaborative Pyramid Network for Camouflaged Object Detection [70.11264880907652]
最近のオブジェクト(COD)は、現実のシナリオでは極めて複雑で難しい、視覚的にブレンドされたオブジェクトを周囲に分割しようと試みている。
本研究では,不明瞭な画像を観察したり,ズームインしたりアウトしたりする際の人間の行動を模倣する,効果的な統合協調ピラミッドネットワークを提案する。
我々のフレームワークは、画像とビデオのCODベンチマークにおいて、既存の最先端の手法を一貫して上回っている。
論文 参考訳(メタデータ) (2023-10-31T06:11:23Z) - You Do Not Need Additional Priors in Camouflage Object Detection [9.494171532426853]
カモフラージュ物体検出(COD)は、カモフラージュされた物体とその周囲の類似性が高いため、重要な課題となる。
本稿では,多層特徴情報を効果的に組み合わせて誘導情報を生成する適応的特徴集約手法を提案する。
提案手法は,最先端手法と比較して,同等あるいは優れた性能を実現する。
論文 参考訳(メタデータ) (2023-10-01T15:44:07Z) - Feature Aggregation and Propagation Network for Camouflaged Object
Detection [42.33180748293329]
カモフラージュされたオブジェクト検出(COD)は、環境に埋め込まれたカモフラージュされたオブジェクトを検出し、分離することを目的としている。
いくつかのCOD法が開発されているが, 前景オブジェクトと背景環境との固有の類似性により, 依然として不満足な性能に悩まされている。
カモフラージュされた物体検出のための新しい特徴集約・伝播ネットワーク(FAP-Net)を提案する。
論文 参考訳(メタデータ) (2022-12-02T05:54:28Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
ドメイン適応によるオブジェクトの無傷な特徴を関連付ける新しい3D検出フレームワークを提案する。
我々は,KITTIの3D検出ベンチマークにおいて,精度と速度の両面で最新の性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T16:54:38Z) - High-resolution Iterative Feedback Network for Camouflaged Object
Detection [128.893782016078]
カモフラージュされたオブジェクトを背景に視覚的に同化させることは、オブジェクト検出アルゴリズムにとって難しい。
エッジやバウンダリのぼやけた視界を生じさせる細部劣化を避けるために,高分解能テクスチャの詳細を抽出することを目的としている。
我々は,高解像度特徴量による低解像度表現を反復的フィードバック方式で洗練する新しいHitNetを提案する。
論文 参考訳(メタデータ) (2022-03-22T11:20:21Z) - Concealed Object Detection [140.98738087261887]
隠蔽物体検出(COD)に関する最初の体系的研究を紹介します。
CODは、背景に「完全に」埋め込まれているオブジェクトを特定することを目指しています。
このタスクをより理解するために、cod10kと呼ばれる大規模なデータセットを収集します。
論文 参考訳(メタデータ) (2021-02-20T06:49:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。