論文の概要: Understanding Model Ensemble in Transferable Adversarial Attack
- arxiv url: http://arxiv.org/abs/2410.06851v1
- Date: Wed, 9 Oct 2024 13:14:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 03:21:00.710977
- Title: Understanding Model Ensemble in Transferable Adversarial Attack
- Title(参考訳): 移動可能な敵攻撃におけるモデルアンサンブルの理解
- Authors: Wei Yao, Zeliang Zhang, Huayi Tang, Yong Liu,
- Abstract要約: まず、逆転送可能性の誤差を測定するために、転送可能性誤差を定義する。
次に、転送可能性エラーを脆弱性、多様性、定数に分解する。
本稿では,情報理論における最新の数学的ツールを用いて,複雑性と一般化項を用いて伝達可能性誤差を限定する。
- 参考スコア(独自算出の注目度): 14.942434125390074
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model ensemble adversarial attack has become a powerful method for generating transferable adversarial examples that can target even unknown models, but its theoretical foundation remains underexplored. To address this gap, we provide early theoretical insights that serve as a roadmap for advancing model ensemble adversarial attack. We first define transferability error to measure the error in adversarial transferability, alongside concepts of diversity and empirical model ensemble Rademacher complexity. We then decompose the transferability error into vulnerability, diversity, and a constant, which rigidly explains the origin of transferability error in model ensemble attack: the vulnerability of an adversarial example to ensemble components, and the diversity of ensemble components. Furthermore, we apply the latest mathematical tools in information theory to bound the transferability error using complexity and generalization terms, contributing to three practical guidelines for reducing transferability error: (1) incorporating more surrogate models, (2) increasing their diversity, and (3) reducing their complexity in cases of overfitting. Finally, extensive experiments with 54 models validate our theoretical framework, representing a significant step forward in understanding transferable model ensemble adversarial attacks.
- Abstract(参考訳): モデルアンサンブル対逆攻撃は、未知のモデルさえも対象とするトランスファー可能な対逆攻撃例を生成する強力な方法となっているが、その理論的基礎は未解明のままである。
このギャップに対処するため、モデルアンサンブル攻撃の進行のロードマップとなる初期の理論的知見を提供する。
我々はまず,多様性と経験的モデルアンサンブル・ラデマッハの複雑性の概念とともに,逆転写可能性の誤差を測定するために転送可能性誤差を定義する。
次に、トランスファービリティエラーを脆弱性、多様性、定数に分解し、モデルアンサンブル攻撃におけるトランスファービリティエラーの起源を厳密に説明する。
さらに,情報理論における最新の数学的ツールを用いて,複雑性と一般化項を用いて伝達可能性誤差を束縛し,(1)より多くのサロゲートモデルの導入,(2)多様性の増大,(3)過度な適合の場合の複雑性の低減という3つの実践的ガイドラインに寄与する。
最後に、54モデルを用いた広範囲な実験により、我々の理論的枠組みが検証され、転送可能なモデルアンサンブル対逆攻撃を理解するための重要な一歩が示される。
関連論文リスト
- Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
本研究では,相互依存データに対する問題に対して,学習可能な分散場を持つ幾何学的拡散モデルを提案する。
因果推論によって新たな学習目標が導出され、ドメイン間で無神経な相互依存の一般化可能なパターンを学習するためのモデルが導出される。
論文 参考訳(メタデータ) (2024-06-07T14:29:21Z) - CT-GAT: Cross-Task Generative Adversarial Attack based on
Transferability [24.272384832200522]
本稿では,様々なタスクにまたがる伝達可能な特徴を抽出して,直接対逆例を構築する手法を提案する。
具体的には,複数のタスクから収集した対数サンプルデータを用いて,CT-GATというシーケンス対シーケンス生成モデルを訓練し,普遍的対数特徴を得る。
その結果,本手法は低コストで優れた攻撃性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-10-22T11:00:04Z) - Why Does Little Robustness Help? Understanding and Improving Adversarial
Transferability from Surrogate Training [24.376314203167016]
DNNの逆例(AE)は転送可能であることが示されている。
本稿では,敵対的伝達可能性の理解に向けてさらなる一歩を踏み出す。
論文 参考訳(メタデータ) (2023-07-15T19:20:49Z) - Common Knowledge Learning for Generating Transferable Adversarial
Examples [60.1287733223249]
本稿では,代用(ソース)モデルにより敵のサンプルを生成するブラックボックス攻撃の重要タイプに着目した。
既存の手法では、ソースモデルとターゲットモデルが異なるタイプのDNNアーキテクチャのものである場合、不満足な逆転が生じる傾向にある。
本稿では,より優れたネットワーク重みを学習し,敵対的な例を生成するための共通知識学習(CKL)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-01T09:07:12Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
本稿では,データセットからのインスタンスのバッチを進化状態にエンコードするエネルギー制約拡散モデルを提案する。
任意のインスタンス対間の対拡散強度に対する閉形式最適推定を示唆する厳密な理論を提供する。
各種タスクにおいて優れた性能を有する汎用エンコーダバックボーンとして,本モデルの適用性を示す実験を行った。
論文 参考訳(メタデータ) (2023-01-23T15:18:54Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
自動対物生成は、生成した対物インスタンスのいくつかの側面を考慮すべきである。
本稿では, 対実例生成のための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2022-05-20T15:02:53Z) - The Transitive Information Theory and its Application to Deep Generative
Models [0.0]
変分オートエンコーダ(VAE)は2つの反対方向に押される。
既存の方法では、圧縮と再構成の間のレート歪みのトレードオフに問題を絞り込む。
一般化のために学習した表現を再結合する機構とともに,非交叉表現の階層構造を学習するシステムを開発する。
論文 参考訳(メタデータ) (2022-03-09T22:35:02Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
本稿では,3つの潜伏変数群からなる動的過程として,運動予測の因果的形式化を導入する。
我々は、因果グラフを近似するために、不変なメカニズムやスタイルの共創者の表現を分解するモジュラーアーキテクチャを考案する。
合成および実データを用いた実験結果から,提案した3つの成分は,学習した動き表現の頑健性と再利用性を大幅に向上することが示された。
論文 参考訳(メタデータ) (2021-11-29T18:59:09Z) - On the Transferability of Adversarial Attacksagainst Neural Text
Classifier [121.6758865857686]
テキスト分類モデルの逆例の転送可能性について検討する。
本稿では,ほとんどすべての既存モデルを騙すために,敵の例を誘導できるモデル群を見つける遺伝的アルゴリズムを提案する。
これらの逆例からモデル診断に使用できる単語置換規則を導出する。
論文 参考訳(メタデータ) (2020-11-17T10:45:05Z) - TREND: Transferability based Robust ENsemble Design [6.663641564969944]
本稿では, ネットワークアーキテクチャ, 入力, 重量, アクティベーションの量子化が, 対向サンプルの転送性に及ぼす影響について検討する。
本研究では,ソースとターゲット間の入力量子化によってトランスファービリティが著しく阻害されていることを示す。
我々は、これに対抗するために、新しい最先端のアンサンブル攻撃を提案する。
論文 参考訳(メタデータ) (2020-08-04T13:38:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。