論文の概要: Secure Video Quality Assessment Resisting Adversarial Attacks
- arxiv url: http://arxiv.org/abs/2410.06866v1
- Date: Wed, 9 Oct 2024 13:27:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 23:47:07.737887
- Title: Secure Video Quality Assessment Resisting Adversarial Attacks
- Title(参考訳): 敵対的攻撃に耐えるセキュアな映像品質評価
- Authors: Ao-Xiang Zhang, Yu Ran, Weixuan Tang, Yuan-Gen Wang, Qingxiao Guan, Chunsheng Yang,
- Abstract要約: 近年の研究では、既存のVQAモデルの敵攻撃に対する脆弱性が明らかにされている。
本稿では,既存のVQAモデルにセキュリティを持たせることを目的とした,一般敵防衛の原則について検討する。
セキュリティ指向の観点から,SecureVQAと呼ばれる新しいVQAフレームワークを提案する。
- 参考スコア(独自算出の注目度): 14.583834512620024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The exponential surge in video traffic has intensified the imperative for Video Quality Assessment (VQA). Leveraging cutting-edge architectures, current VQA models have achieved human-comparable accuracy. However, recent studies have revealed the vulnerability of existing VQA models against adversarial attacks. To establish a reliable and practical assessment system, a secure VQA model capable of resisting such malicious attacks is urgently demanded. Unfortunately, no attempt has been made to explore this issue. This paper first attempts to investigate general adversarial defense principles, aiming at endowing existing VQA models with security. Specifically, we first introduce random spatial grid sampling on the video frame for intra-frame defense. Then, we design pixel-wise randomization through a guardian map, globally neutralizing adversarial perturbations. Meanwhile, we extract temporal information from the video sequence as compensation for inter-frame defense. Building upon these principles, we present a novel VQA framework from the security-oriented perspective, termed SecureVQA. Extensive experiments indicate that SecureVQA sets a new benchmark in security while achieving competitive VQA performance compared with state-of-the-art models. Ablation studies delve deeper into analyzing the principles of SecureVQA, demonstrating their generalization and contributions to the security of leading VQA models.
- Abstract(参考訳): ビデオトラフィックの急激な急増により、ビデオ品質アセスメント(VQA)が強化された。
最先端アーキテクチャを活用することで、現在のVQAモデルは人間の互換性のある精度を実現している。
しかし、近年の研究では、既存のVQAモデルの敵攻撃に対する脆弱性が明らかにされている。
信頼性が高く実用的な評価システムを確立するために、このような悪意ある攻撃に抵抗できるセキュアなVQAモデルを緊急に要求する。
残念ながら、この問題を探求する試みは行われていない。
本稿では,既存のVQAモデルにセキュリティを持たせることを目的とした,一般敵防衛の原則について検討する。
具体的には、フレーム内防御のためのビデオフレームにランダムな空間グリッドサンプリングを導入する。
そこで,我々は,対向的摂動を大域的に中和するガーディアンマップを用いて画素単位のランダム化を設計する。
一方、フレーム間防御のための補償として、ビデオシーケンスから時間情報を抽出する。
これらの原則に基づいて,セキュリティ指向の観点から,SecureVQAと呼ばれる新しいVQAフレームワークを提案する。
大規模な実験は、SecureVQAが最新技術モデルと比較して競争力のあるVQA性能を実現しつつ、セキュリティの新たなベンチマークを設定していることを示している。
アブレーション研究はSecureVQAの原則を分析し、その一般化と主要なVQAモデルのセキュリティへの貢献を実証する。
関連論文リスト
- Enhancing Blind Video Quality Assessment with Rich Quality-aware Features [79.18772373737724]
ソーシャルメディアビデオの視覚的品質評価(BVQA)モデルを改善するための,シンプルだが効果的な手法を提案する。
本稿では,BIQAモデルとBVQAモデルを用いて,事前学習したブラインド画像品質評価(BIQA)から,リッチな品質認識機能について検討する。
実験により,提案モデルが3つのソーシャルメディアVQAデータセット上で最高の性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-05-14T16:32:11Z) - Defense Against Adversarial Attacks on No-Reference Image Quality Models with Gradient Norm Regularization [18.95463890154886]
No-Reference Image Quality Assessment (NR-IQA)モデルは、メディア業界において重要な役割を果たす。
これらのモデルは、入力画像に知覚不能な摂動をもたらす敵攻撃に弱いことが判明した。
そこで本研究では,小さな摂動に攻撃された場合の予測スコアの安定性を向上させるための防衛手法を提案する。
論文 参考訳(メタデータ) (2024-03-18T01:11:53Z) - Vulnerabilities in Video Quality Assessment Models: The Challenge of
Adversarial Attacks [15.127749101160672]
No-Reference Video Quality Assessment (NR-VQA) は,エンドユーザの視聴体験を改善する上で重要な役割を担っている。
近年,CNN と Transformer をベースとした NR-VQA モデルは優れた性能を発揮している。
敵攻撃に対するNR-VQAモデルの堅牢性を評価するための最初の試みを行う。
論文 参考訳(メタデータ) (2023-09-24T11:17:38Z) - Analysis of Video Quality Datasets via Design of Minimalistic Video Quality Models [71.06007696593704]
BVQA(Blind Quality Assessment)は、実世界のビデオ対応メディアアプリケーションにおけるエンドユーザの視聴体験の監視と改善に不可欠である。
実験分野として、BVQAモデルの改良は、主に数個の人間の評価されたVQAデータセットに基づいて測定されている。
最小主義的BVQAモデルを用いて,VQAデータセットの第一種計算解析を行う。
論文 参考訳(メタデータ) (2023-07-26T06:38:33Z) - Improving Visual Question Answering Models through Robustness Analysis
and In-Context Learning with a Chain of Basic Questions [70.70725223310401]
本研究は,VQAモデルのロバスト性を評価するために,基本質問と呼ばれる意味的関連質問を利用する新しい手法を提案する。
実験により,提案手法はVQAモデルのロバスト性を効果的に解析することを示した。
論文 参考訳(メタデータ) (2023-04-06T15:32:35Z) - Visual Prompting for Adversarial Robustness [63.89295305670113]
我々は、視覚的プロンプト計算を用いて、テスト時に固定された事前訓練されたモデルの対向ロバスト性を改善する。
本稿では,クラスワイズビジュアルプロンプトを生成するために,クラスワイズビジュアルプロンプト(C-AVP)と呼ばれる新しいVP手法を提案する。
C-AVPは従来のVP法よりも2.1倍の精度向上、2倍の堅牢な精度向上を実現している。
論文 参考訳(メタデータ) (2022-10-12T15:06:07Z) - Neighbourhood Representative Sampling for Efficient End-to-end Video
Quality Assessment [60.57703721744873]
リアルタイムビデオの高解像度化は、VQA(Deep Video Quality Assessment)の効率性と精度のジレンマを示す
そこで本研究では,空間時空間格子型ミニキューブサンプリング(St-GMS)を統一的に提案し,新しいタイプのフラグメントを抽出する。
フラグメントとFANetにより、提案された効率的なエンドツーエンドのFAST-VQAとFasterVQAは、既存のVQAベンチマークよりも大幅にパフォーマンスが向上した。
論文 参考訳(メタデータ) (2022-10-11T11:38:07Z) - Adversarial VQA: A New Benchmark for Evaluating the Robustness of VQA
Models [45.777326168922635]
本稿では,新たな大規模VQAベンチマークであるAdversarial VQAを紹介する。
非熟練アノテータは比較的容易にSOTA VQAモデルに攻撃できることがわかった。
大規模な事前訓練モデルと敵のトレーニング方法はどちらも、標準的なVQA v2データセットで達成できるものよりもはるかに低いパフォーマンスしか達成できない。
論文 参考訳(メタデータ) (2021-06-01T05:54:41Z) - Regularizing Attention Networks for Anomaly Detection in Visual Question
Answering [10.971443035470488]
最先端VQAモデルのロバスト性を5つの異なる異常に評価する。
入力画像と質問間の推論の信頼度を利用した注意に基づく手法を提案する。
注意ネットワークの最大エントロピー正規化は、注意に基づく異常検出を大幅に改善できることを示す。
論文 参考訳(メタデータ) (2020-09-21T17:47:49Z) - UGC-VQA: Benchmarking Blind Video Quality Assessment for User Generated
Content [59.13821614689478]
コンテンツの品質劣化は予測不能で、複雑で、しばしば開始されるため、Wild動画のブラインド品質の予測は非常に難しい。
ここでは、主要なVQAモデルの包括的評価を行うことにより、この問題の進展に寄与する。
先行するVQAモデルの特徴の上に特徴選択戦略を適用することで,先行するモデルが使用する統計的特徴のうち60点を抽出することができる。
我々の実験結果から,VIDEVALは,他の先行モデルよりも計算コストがかなり低く,最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2020-05-29T00:39:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。