Learning from Spatio-temporal Correlation for Semi-Supervised LiDAR Semantic Segmentation
- URL: http://arxiv.org/abs/2410.06893v1
- Date: Wed, 9 Oct 2024 13:57:39 GMT
- Title: Learning from Spatio-temporal Correlation for Semi-Supervised LiDAR Semantic Segmentation
- Authors: Seungho Lee, Hwijeong Lee, Hyunjung Shim,
- Abstract summary: Two main issues in low-budget SSLS are the poor-quality pseudo-labels for unlabeled data, and the performance drops.
We propose a proximity-based label estimation, which generates highly accurate pseudo-labels for unlabeled data.
Experimental results demonstrate remarkable performance in low-budget settings.
- Score: 17.151511119485246
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the challenges of the semi-supervised LiDAR segmentation (SSLS) problem, particularly in low-budget scenarios. The two main issues in low-budget SSLS are the poor-quality pseudo-labels for unlabeled data, and the performance drops due to the significant imbalance between ground-truth and pseudo-labels. This imbalance leads to a vicious training cycle. To overcome these challenges, we leverage the spatio-temporal prior by recognizing the substantial overlap between temporally adjacent LiDAR scans. We propose a proximity-based label estimation, which generates highly accurate pseudo-labels for unlabeled data by utilizing semantic consistency with adjacent labeled data. Additionally, we enhance this method by progressively expanding the pseudo-labels from the nearest unlabeled scans, which helps significantly reduce errors linked to dynamic classes. Additionally, we employ a dual-branch structure to mitigate performance degradation caused by data imbalance. Experimental results demonstrate remarkable performance in low-budget settings (i.e., <= 5%) and meaningful improvements in normal budget settings (i.e., 5 - 50%). Finally, our method has achieved new state-of-the-art results on SemanticKITTI and nuScenes in semi-supervised LiDAR segmentation. With only 5% labeled data, it offers competitive results against fully-supervised counterparts. Moreover, it surpasses the performance of the previous state-of-the-art at 100% labeled data (75.2%) using only 20% of labeled data (76.0%) on nuScenes. The code is available on https://github.com/halbielee/PLE.
Related papers
- Continuous Contrastive Learning for Long-Tailed Semi-Supervised Recognition [50.61991746981703]
Current state-of-the-art LTSSL approaches rely on high-quality pseudo-labels for large-scale unlabeled data.
This paper introduces a novel probabilistic framework that unifies various recent proposals in long-tail learning.
We introduce a continuous contrastive learning method, CCL, extending our framework to unlabeled data using reliable and smoothed pseudo-labels.
arXiv Detail & Related papers (2024-10-08T15:06:10Z) - FlatMatch: Bridging Labeled Data and Unlabeled Data with Cross-Sharpness
for Semi-Supervised Learning [73.13448439554497]
Semi-Supervised Learning (SSL) has been an effective way to leverage abundant unlabeled data with extremely scarce labeled data.
Most SSL methods are commonly based on instance-wise consistency between different data transformations.
We propose FlatMatch which minimizes a cross-sharpness measure to ensure consistent learning performance between the two datasets.
arXiv Detail & Related papers (2023-10-25T06:57:59Z) - All Points Matter: Entropy-Regularized Distribution Alignment for
Weakly-supervised 3D Segmentation [67.30502812804271]
Pseudo-labels are widely employed in weakly supervised 3D segmentation tasks where only sparse ground-truth labels are available for learning.
We propose a novel learning strategy to regularize the generated pseudo-labels and effectively narrow the gaps between pseudo-labels and model predictions.
arXiv Detail & Related papers (2023-05-25T08:19:31Z) - Boosting Semi-Supervised Learning with Contrastive Complementary
Labeling [11.851898765002334]
A popular approach is pseudo-labeling that generates pseudo labels only for those unlabeled data with high-confidence predictions.
We highlight that data with low-confidence pseudo labels can be still beneficial to the training process.
Inspired by this, we propose a novel Contrastive Complementary Labeling (CCL) method that constructs a large number of reliable negative pairs.
arXiv Detail & Related papers (2022-12-13T15:25:49Z) - Re-distributing Biased Pseudo Labels for Semi-supervised Semantic
Segmentation: A Baseline Investigation [30.688753736660725]
We present a simple and yet effective Distribution Alignment and Random Sampling (DARS) method to produce unbiased pseudo labels.
Our method performs favorably in comparison with state-of-the-art approaches.
arXiv Detail & Related papers (2021-07-23T14:45:14Z) - Distribution-Aware Semantics-Oriented Pseudo-label for Imbalanced
Semi-Supervised Learning [80.05441565830726]
This paper addresses imbalanced semi-supervised learning, where heavily biased pseudo-labels can harm the model performance.
We propose a general pseudo-labeling framework to address the bias motivated by this observation.
We term the novel pseudo-labeling framework for imbalanced SSL as Distribution-Aware Semantics-Oriented (DASO) Pseudo-label.
arXiv Detail & Related papers (2021-06-10T11:58:25Z) - Relieving the Plateau: Active Semi-Supervised Learning for a Better
Landscape [2.3046646540823916]
Semi-supervised learning (SSL) leverages unlabeled data that are more accessible than their labeled counterparts.
Active learning (AL) selects unlabeled instances to be annotated by a human-in-the-loop in hopes of better performance with less labeled data.
We propose convergence rate control (CRC), an AL algorithm that selects unlabeled data to improve the problem conditioning upon inclusion to the labeled set.
arXiv Detail & Related papers (2021-04-08T06:03:59Z) - In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label
Selection Framework for Semi-Supervised Learning [53.1047775185362]
Pseudo-labeling (PL) is a general SSL approach that does not have this constraint but performs relatively poorly in its original formulation.
We argue that PL underperforms due to the erroneous high confidence predictions from poorly calibrated models.
We propose an uncertainty-aware pseudo-label selection (UPS) framework which improves pseudo labeling accuracy by drastically reducing the amount of noise encountered in the training process.
arXiv Detail & Related papers (2021-01-15T23:29:57Z) - Distribution Aligning Refinery of Pseudo-label for Imbalanced
Semi-supervised Learning [126.31716228319902]
We develop Distribution Aligning Refinery of Pseudo-label (DARP) algorithm.
We show that DARP is provably and efficiently compatible with state-of-the-art SSL schemes.
arXiv Detail & Related papers (2020-07-17T09:16:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.