論文の概要: Utilize the Flow before Stepping into the Same River Twice: Certainty Represented Knowledge Flow for Refusal-Aware Instruction Tuning
- arxiv url: http://arxiv.org/abs/2410.06913v1
- Date: Wed, 9 Oct 2024 14:12:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 23:37:21.958018
- Title: Utilize the Flow before Stepping into the Same River Twice: Certainty Represented Knowledge Flow for Refusal-Aware Instruction Tuning
- Title(参考訳): 対流に踏み込む前の流れを生かして : 拒否意識学習のための知識フローの確実性
- Authors: Runchuan Zhu, Zhipeng Ma, Jiang Wu, Junyuan Gao, Jiaqi Wang, Dahua Lin, Conghui He,
- Abstract要約: リファレンス・アウェア・インストラクション・コンストラクション(CRaFT)のための確実性表現型知識フローについて紹介する。
CRaFTは、応答の確実性を取り入れて、データを選択的にフィルタリングし、修正し、静的な競合を減らす。
オープンエンド質問応答と複数選択質問課題について広範な実験を行った。
- 参考スコア(独自算出の注目度): 68.57166425493283
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Refusal-Aware Instruction Tuning (RAIT) enables Large Language Models (LLMs) to refuse to answer unknown questions. By modifying responses of unknown questions in the training data to refusal responses such as "I don't know", RAIT enhances the reliability of LLMs and reduces their hallucination. Generally, RAIT modifies training samples based on the correctness of the initial LLM's response. However, this crude approach can cause LLMs to excessively refuse answering questions they could have correctly answered, the problem we call over-refusal. In this paper, we explore two primary causes of over-refusal: Static conflict emerges when the RAIT data is constructed solely on correctness criteria, causing similar samples in the LLM's feature space to be assigned different labels (original vs. modified "I don't know"). Dynamic conflict occurs due to the changes of LLM's knowledge state during fine-tuning, which transforms previous unknown questions into knowns, while the training data, which is constructed based on the initial LLM, remains unchanged. These conflicts cause the trained LLM to misclassify known questions as unknown, resulting in over-refusal. To address this issue, we introduce Certainty Represented Knowledge Flow for Refusal-Aware Instructions Construction (CRaFT). CRaFT centers on two main contributions: First, we additionally incorporate response certainty to selectively filter and modify data, reducing static conflicts. Second, we implement preliminary rehearsal training to characterize changes in the LLM's knowledge state, which helps mitigate dynamic conflicts during the fine-tuning process. We conducted extensive experiments on open-ended question answering and multiple-choice question task. Experiment results show that CRaFT can improve LLM's overall performance during the RAIT process. Source code and training data will be released at Github.
- Abstract(参考訳): Refusal-Aware Instruction Tuning (RAIT) により、Large Language Models (LLM) は未知の質問に答えることを拒否できる。
学習データ中の未知の質問の応答を「私は知らない」などの反応を拒否するために修正することにより、RAITはLLMの信頼性を高め、幻覚を減少させる。
一般に、RAITは初期LSM応答の正しさに基づいてトレーニングサンプルを変更する。
しかし、この粗末なアプローチは、LLMが正しく答えられる可能性のある質問に答えることを過剰に拒否する可能性がある。
本稿では, RAITデータが正当性基準のみに基づいて構築され, LLMの特徴空間の類似したサンプルが異なるラベルに割り当てられることによって, 静的衝突が発生する。
動的衝突は、従来の未知の質問を未知の質問に変換する微調整中のLLMの知識状態の変化に起因するが、最初のLLMに基づいて構築されたトレーニングデータは変わらぬままである。
これらの対立は、訓練されたLLMが既知の質問を未知のものとして誤分類し、過度に拒絶する原因となる。
この問題に対処するため,CRaFT (Certainty Represented Knowledge Flow for Refusal-Aware Instructions Construction) を提案する。
CRaFTは2つの主要なコントリビューションに重点を置いている。 まず、データを選択的にフィルタリングし、修正し、静的なコンフリクトを減らすために、応答の確実性も追加する。
第2に,LLMの知識状態の変化を特徴付けるための予備的リハーサルトレーニングを実施し,微調整過程における動的衝突を軽減する。
オープンエンド質問応答と複数選択質問課題について広範な実験を行った。
実験の結果, CRaFT は RAIT プロセスにおける LLM の全体的な性能を向上できることがわかった。
ソースコードとトレーニングデータはGithubで公開される。
関連論文リスト
- Are LLMs Aware that Some Questions are not Open-ended? [58.93124686141781]
大規模言語モデルでは、いくつかの質問が限定的な回答を持ち、より決定論的に答える必要があることを認識しているかどうかを調査する。
LLMにおける疑問認識の欠如は,(1)非オープンな質問に答えるにはカジュアルすぎる,(2)オープンな質問に答えるには退屈すぎる,という2つの現象をもたらす。
論文 参考訳(メタデータ) (2024-10-01T06:07:00Z) - From Distributional to Overton Pluralism: Investigating Large Language Model Alignment [82.99849359892112]
適応後の応答多様性の低下を以前報告した再検査を行った。
分析の結果,応答の多様性の明らかな低下は,品質管理と情報集約によって大きく説明できることがわかった。
発見は、現在のアライメント技術はキャプチャーされるが、アシスタントライクなベースLLM動作の有用なサブセットを拡張するものではないことを示している。
論文 参考訳(メタデータ) (2024-06-25T16:32:33Z) - Open-LLM-Leaderboard: From Multi-choice to Open-style Questions for LLMs Evaluation, Benchmark, and Arena [23.264049073539663]
大規模言語モデル(LLM)を評価するために、MCQ(Multiple-choice Question)が頻繁に使用される。
LLMは、A/B/C/Dのような特定の解選択IDを本質的に好んでいるかもしれない。
本研究は,これらの課題に対処し,完全にオープンな質問を通じて新たなLCM評価ベンチマークを確立することを目的としている。
論文 参考訳(メタデータ) (2024-06-11T17:59:47Z) - PokeMQA: Programmable knowledge editing for Multi-hop Question Answering [46.80110170981976]
マルチホップ質問応答(MQA)は、マシンの理解と推論能力を評価する上で難しいタスクの1つである。
マルチホップ質問回答(MQA)のためのフレームワーク、Programmable Knowledge Editorを提案する。
具体的には、LLMの動作を外部のコンフリクト信号に応じて変調する訓練可能なスコープ検出器と相互作用しながら、知識強化されたマルチホップ質問を分解するよう促す。
論文 参考訳(メタデータ) (2023-12-23T08:32:13Z) - Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves [57.974103113675795]
本稿では,Rephrase and Respond'(RaR)という手法を提案する。
RaRは、パフォーマンスを改善するためのシンプルだが効果的なプロンプト方法として機能する。
また,RaRは理論的にも経験的にも,一般的なChain-of-Thought(CoT)法と相補的であることを示す。
論文 参考訳(メタデータ) (2023-11-07T18:43:34Z) - Knowing What LLMs DO NOT Know: A Simple Yet Effective Self-Detection Method [36.24876571343749]
大規模言語モデル(LLM)は自然言語処理(NLP)タスクにおいて大きな可能性を示している。
近年の文献では、LLMは断続的に非実効応答を生成する。
本研究では,LLM が知らない質問が非現実的な結果を生成する傾向にあることを検知する新たな自己検出手法を提案する。
論文 参考訳(メタデータ) (2023-10-27T06:22:14Z) - FreshLLMs: Refreshing Large Language Models with Search Engine
Augmentation [92.43001160060376]
本研究では,現在の世界知識をテストする質問に答える文脈において,大規模言語モデル(LLM)の事実性について検討する。
多様な質問や回答のタイプを含む新しい動的QAベンチマークであるFreshQAを紹介する。
我々は,2モード評価法により,閉じたLLMとオープンソースのLLMの多種多様な配列をベンチマークし,その正しさと幻覚の両面を計測する。
これらの結果に触発されたFreshPromptは、FreshQA上でのLLMの性能を大幅に向上させる単純な数ショットプロンプトである。
論文 参考訳(メタデータ) (2023-10-05T00:04:12Z) - RCOT: Detecting and Rectifying Factual Inconsistency in Reasoning by
Reversing Chain-of-Thought [56.558892336235914]
Reversing Chain-of-Thought (RCoT) は、大規模言語モデルの推論能力を改善する新しい手法である。
RCoTは生成したソリューションにおける事実の不整合を自動的に検出し、修正する。
手書きのきめ細かいフィードバックがLLMの推論能力を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-05-19T08:02:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。