論文の概要: Estimating Exoplanet Mass using Machine Learning on Incomplete Datasets
- arxiv url: http://arxiv.org/abs/2410.06922v1
- Date: Wed, 9 Oct 2024 14:19:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 23:37:21.941022
- Title: Estimating Exoplanet Mass using Machine Learning on Incomplete Datasets
- Title(参考訳): 不完全データセットを用いた機械学習による外惑星質量の推定
- Authors: Florian Lalande, Elizabeth Tasker, Kenji Doya,
- Abstract要約: 発見されている惑星の70%以上が、測定された惑星の質量を持っていない。
提案手法は,惑星質量の計算に欠落した特性を推定するために,機械学習アルゴリズムを用いる方法を示す。
- 参考スコア(独自算出の注目度): 1.6231541773673115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The exoplanet archive is an incredible resource of information on the properties of discovered extrasolar planets, but statistical analysis has been limited by the number of missing values. One of the most informative bulk properties is planet mass, which is particularly challenging to measure with more than 70\% of discovered planets with no measured value. We compare the capabilities of five different machine learning algorithms that can utilize multidimensional incomplete datasets to estimate missing properties for imputing planet mass. The results are compared when using a partial subset of the archive with a complete set of six planet properties, and where all planet discoveries are leveraged in an incomplete set of six and eight planet properties. We find that imputation results improve with more data even when the additional data is incomplete, and allows a mass prediction for any planet regardless of which properties are known. Our favored algorithm is the newly developed $k$NN$\times$KDE, which can return a probability distribution for the imputed properties. The shape of this distribution can indicate the algorithm's level of confidence, and also inform on the underlying demographics of the exoplanet population. We demonstrate how the distributions can be interpreted with a series of examples for planets where the discovery was made with either the transit method, or radial velocity method. Finally, we test the generative capability of the $k$NN$\times$KDE to create a large synthetic population of planets based on the archive, and identify potential categories of planets from groups of properties in the multidimensional space. All codes are Open Source.
- Abstract(参考訳): 地球外惑星アーカイブは、発見された太陽系外惑星の性質に関する情報の驚くべき資源であるが、統計学的分析は欠落した値の数によって制限されている。
最も有益なバルク特性の1つは惑星の質量であり、測定値のない発見惑星の70%以上で測定することは特に困難である。
我々は、多次元不完全データセットを用いて惑星質量を計算するための欠落特性を推定できる5つの異なる機械学習アルゴリズムの性能を比較した。
結果は、アーカイブの部分的な部分集合を6つの惑星の性質の完全なセットで使用し、全ての惑星の発見を6つの惑星特性と8つの惑星特性の不完全なセットで活用する場合に比較される。
我々は、追加データが不完全である場合でも、計算結果がより多くのデータで改善され、どの性質が知られているかに関わらず、どの惑星に対しても質量予測が可能であることを発見した。
我々の好むアルゴリズムは、新しく開発された$k$NN$\times$KDEであり、命令された特性に対して確率分布を返すことができる。
この分布の形状は、アルゴリズムの信頼性のレベルを示し、また太陽系外惑星の人口層を知らせる。
本研究では, トランジット法とラジアル速度法のいずれかを用いて発見を行った惑星の一連の例を用いて, 分布を解釈する方法を実証する。
最後に、$k$NN$\times$KDEの生成能力を検証し、アーカイブに基づいて惑星の大規模な合成集団を作成し、多次元空間における特性群から惑星の潜在的カテゴリを特定する。
すべてのコードはオープンソースである。
関連論文リスト
- Exoplanets Prediction in Multi-Planetary Systems and Determining the
Correlation Between the Parameters of Planets and Host Stars Using Artificial
Intelligence [0.0]
我々は、少なくとも3つ以上の確認済みの惑星を収容する229個の多惑星系で、さらに太陽系外惑星を探索する。
我々は効率的な機械学習手法を用いて、762個の太陽系外惑星と8個の太陽系外惑星からなるデータセットを解析した。
巨大惑星では、惑星半径と主星の質量の間に強い相関関係が見られ、惑星形成と恒星の性質の関係に関する興味深い洞察を与えるかもしれない。
論文 参考訳(メタデータ) (2024-02-27T21:28:08Z) - DBNets: A publicly available deep learning tool to measure the masses of
young planets in dusty protoplanetary discs [49.1574468325115]
我々は、原始惑星系円盤から埋め込まれたとされる惑星の質量を素早く推定するDBNetsを開発した。
アウト・オブ・ディストリビューション・データでツールを広範囲にテストしました。
DBNetはトレーニング範囲外において、特定のしきい値以上の不確実性を返す入力を強く識別することができる。
光学的に薄い状態において、約60deg以下の傾斜で観測された円盤にのみ確実に適用することができる。
論文 参考訳(メタデータ) (2024-02-19T19:00:09Z) - Multiple Random Masking Autoencoder Ensembles for Robust Multimodal
Semi-supervised Learning [64.81450582542878]
コンピュータビジョンや機械学習には、現実の問題が増えている。
衛星データから地球観測を行う場合、一つの観測層を予測できることが重要である。
論文 参考訳(メタデータ) (2024-02-12T20:08:58Z) - Identification and Classification of Exoplanets Using Machine Learning
Techniques [0.0]
ケプラー宇宙望遠鏡とその拡張ミッションK2のデータに対する残差ネットワークを用いた太陽系外惑星の同定に関する既存の研究について検討する。
本研究の目的は、深層学習アルゴリズムが、あるケースにおけるデータ量の少ない外惑星の存在と、別のケースにおけるより広範なデータの存在を分類する上で、どのように役立つかを明らかにすることである。
論文 参考訳(メタデータ) (2023-05-16T16:51:07Z) - Revisiting mass-radius relationships for exoplanet populations: a
machine learning insight [0.0]
我々は効率的な機械学習手法を用いて、762個の太陽系外惑星と8個の太陽系外惑星からなるデータセットを解析した。
異なる教師なしクラスタリングアルゴリズムを適用することで、データを「小さい」惑星と「巨大な」惑星の2つの分類に分類する。
我々の分析は、惑星の質量、軌道周期、恒星質量が太陽系外惑星半径を予測する重要な役割を担っていることを強調している。
論文 参考訳(メタデータ) (2023-01-17T19:15:06Z) - Predictive World Models from Real-World Partial Observations [66.80340484148931]
本研究では,現実の道路環境に対する確率論的予測世界モデル学習のためのフレームワークを提案する。
従来の手法では、学習のための基礎的真理として完全状態を必要とするが、HVAEが部分的に観察された状態のみから完全状態を予測することを学べる新しい逐次訓練法を提案する。
論文 参考訳(メタデータ) (2023-01-12T02:07:26Z) - Locating Hidden Exoplanets in ALMA Data Using Machine Learning [10.316742952272394]
機械学習が惑星の存在を迅速かつ正確に検出できることを実証する。
我々はシミュレーションから生成された合成画像に基づいてモデルを訓練し、実際の観測に応用して、実際の系における形成惑星を同定する。
論文 参考訳(メタデータ) (2022-11-17T14:02:16Z) - Semi-Supervised Domain Adaptation for Cross-Survey Galaxy Morphology
Classification and Anomaly Detection [57.85347204640585]
We developed a Universal Domain Adaptation method DeepAstroUDA。
異なるタイプのクラスオーバーラップしたデータセットに適用することができる。
初めて、我々は2つの非常に異なる観測データセットに対するドメイン適応の有効利用を実演した。
論文 参考訳(メタデータ) (2022-11-01T18:07:21Z) - Data-Efficient Learning via Minimizing Hyperspherical Energy [48.47217827782576]
本稿では,少数の代表データを用いたスクラッチからのデータ効率学習の問題について考察する。
我々は,MHEに基づくアクティブラーニング(MHEAL)アルゴリズムを提案し,MHEALの包括的な理論的保証を提供する。
論文 参考訳(メタデータ) (2022-06-30T11:39:12Z) - Satellite Image Time Series Analysis for Big Earth Observation Data [50.591267188664666]
本稿では,機械学習を用いた衛星画像時系列解析のためのオープンソースRパッケージである sit について述べる。
本手法は, Cerrado Biome のケーススタディにより, 土地利用と土地被覆マップの精度が高いことを示す。
論文 参考訳(メタデータ) (2022-04-24T15:23:25Z) - Exoplanet Detection using Machine Learning [0.0]
トランジット法を用いて外惑星を検出する機械学習に基づく新しい手法を提案する。
ケプラーのデータでは、AUCが0.948である惑星を予測できるため、真の惑星信号の94.8%が非惑星信号よりも高い位置にある。
トランジット系外惑星探査衛星(TESS)のデータでは、我々の方法では光曲線を0.98の精度で分類することができ、0.82のリコールで惑星を0.63の精度で識別できることがわかった。
論文 参考訳(メタデータ) (2020-11-28T14:06:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。