Classification of Buried Objects from Ground Penetrating Radar Images by using Second Order Deep Learning Models
- URL: http://arxiv.org/abs/2410.07117v2
- Date: Wed, 20 Nov 2024 13:17:08 GMT
- Title: Classification of Buried Objects from Ground Penetrating Radar Images by using Second Order Deep Learning Models
- Authors: Douba Jafuno, Ammar Mian, Guillaume Ginolhac, Nickolas Stelzenmuller,
- Abstract summary: A new classification model based on covariance matrices is built in order to classify buried objects.
We show in a large database that our approach outperform shallow networks designed for GPR data.
We also illustrate the interest of our models when training data and test sets are obtained from different weather modes or considerations.
- Score: 3.332733725674752
- License:
- Abstract: In this paper, a new classification model based on covariance matrices is built in order to classify buried objects. The inputs of the proposed models are the hyperbola thumbnails obtained with a classical Ground Penetrating Radar (GPR) system. These thumbnails are then inputs to the first layers of a classical CNN, which then produces a covariance matrix using the outputs of the convolutional filters. Next, the covariance matrix is given to a network composed of specific layers to classify Symmetric Positive Definite (SPD) matrices. We show in a large database that our approach outperform shallow networks designed for GPR data and conventional CNNs typically used in computer vision applications, particularly when the number of training data decreases and in the presence of mislabeled data. We also illustrate the interest of our models when training data and test sets are obtained from different weather modes or considerations.
Related papers
- Exploring Beyond Logits: Hierarchical Dynamic Labeling Based on Embeddings for Semi-Supervised Classification [49.09505771145326]
We propose a Hierarchical Dynamic Labeling (HDL) algorithm that does not depend on model predictions and utilizes image embeddings to generate sample labels.
Our approach has the potential to change the paradigm of pseudo-label generation in semi-supervised learning.
arXiv Detail & Related papers (2024-04-26T06:00:27Z) - On Characterizing the Evolution of Embedding Space of Neural Networks
using Algebraic Topology [9.537910170141467]
We study how the topology of feature embedding space changes as it passes through the layers of a well-trained deep neural network (DNN) through Betti numbers.
We demonstrate that as depth increases, a topologically complicated dataset is transformed into a simple one, resulting in Betti numbers attaining their lowest possible value.
arXiv Detail & Related papers (2023-11-08T10:45:12Z) - Qudit Machine Learning [0.0]
We present a comprehensive investigation into the learning capabilities of a simple d-level system (qudit)
Our study is specialized for classification tasks using real-world databases, specifically the Iris, breast cancer, and MNIST datasets.
arXiv Detail & Related papers (2023-08-30T18:00:04Z) - The SVD of Convolutional Weights: A CNN Interpretability Framework [3.5783190448496343]
We propose a framework against which interpretability methods might be applied using hypergraphs to model class separation.
Rather than looking to the activations to explain the network, we use the singular vectors with the greatest corresponding singular values for each linear layer to identify those features most important to the network.
arXiv Detail & Related papers (2022-08-14T18:23:02Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
We show that utilizing attribution maps for training neural networks can improve regularization of models and thus increase performance.
In particular, we show that our generic domain-independent approach yields state-of-the-art results in vision, natural language processing and on time series tasks.
arXiv Detail & Related papers (2022-05-30T13:34:46Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN) is a tensor-based nonlinear learning model that imposes Canonical/Polyadic decomposition on its parameters.
First, it handles inputs as multilinear arrays, bypassing the need for vectorization, and can thus fully exploit the structural information along every data dimension.
We establish the universal approximation and learnability properties of Rank-R FNN, and we validate its performance on real-world hyperspectral datasets.
arXiv Detail & Related papers (2021-04-11T16:37:32Z) - Convolutional Dynamic Alignment Networks for Interpretable
Classifications [108.83345790813445]
We introduce a new family of neural network models called Convolutional Dynamic Alignment Networks (CoDA-Nets)
Their core building blocks are Dynamic Alignment Units (DAUs), which linearly transform their input with weight vectors that dynamically align with task-relevant patterns.
CoDA-Nets model the classification prediction through a series of input-dependent linear transformations, allowing for linear decomposition of the output into individual input contributions.
arXiv Detail & Related papers (2021-03-31T18:03:53Z) - An evidential classifier based on Dempster-Shafer theory and deep
learning [6.230751621285322]
We propose a new classification system based on Dempster-Shafer (DS) theory and a convolutional neural network (CNN) architecture for set-valued classification.
Experiments on image recognition, signal processing, and semantic-relationship classification tasks demonstrate that the proposed combination of deep CNN, DS layer, and expected utility layer makes it possible to improve classification accuracy.
arXiv Detail & Related papers (2021-03-25T01:29:05Z) - MOCCA: Multi-Layer One-Class ClassificAtion for Anomaly Detection [16.914663209964697]
We propose our deep learning approach to the anomaly detection problem named Multi-LayerOne-Class Classification (MOCCA)
We explicitly leverage the piece-wise nature of deep neural networks by exploiting information extracted at different depths to detect abnormal data instances.
We show that our method reaches superior performances compared to the state-of-the-art approaches available in the literature.
arXiv Detail & Related papers (2020-12-09T08:32:56Z) - Pre-Trained Models for Heterogeneous Information Networks [57.78194356302626]
We propose a self-supervised pre-training and fine-tuning framework, PF-HIN, to capture the features of a heterogeneous information network.
PF-HIN consistently and significantly outperforms state-of-the-art alternatives on each of these tasks, on four datasets.
arXiv Detail & Related papers (2020-07-07T03:36:28Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.