Diagnosis and Pathogenic Analysis of Autism Spectrum Disorder Using Fused Brain Connection Graph
- URL: http://arxiv.org/abs/2410.07138v1
- Date: Sun, 22 Sep 2024 01:23:46 GMT
- Title: Diagnosis and Pathogenic Analysis of Autism Spectrum Disorder Using Fused Brain Connection Graph
- Authors: Lu Wei, Yi Huang, Guosheng Yin, Fode Zhang, Manxue Zhang, Bin Liu,
- Abstract summary: We propose a model for diagnosing Autism spectrum disorder (ASD) using multimodal magnetic resonance imaging (MRI) data.
Our approach integrates brain connectivity data fromDTI and functional MRI, employing graph neural networks (GNNs) for fused graph classification.
We analyze network node centrality, calculating degree, subgraph, and eigenvector centralities on a bimodal fused brain graph to identify pathological regions linked to ASD.
- Score: 14.00990852115585
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose a model for diagnosing Autism spectrum disorder (ASD) using multimodal magnetic resonance imaging (MRI) data. Our approach integrates brain connectivity data from diffusion tensor imaging (DTI) and functional MRI (fMRI), employing graph neural networks (GNNs) for fused graph classification. To improve diagnostic accuracy, we introduce a loss function that maximizes inter-class and minimizes intra-class margins. We also analyze network node centrality, calculating degree, subgraph, and eigenvector centralities on a bimodal fused brain graph to identify pathological regions linked to ASD. Two non-parametric tests assess the statistical significance of these centralities between ASD patients and healthy controls. Our results reveal consistency between the tests, yet the identified regions differ significantly across centralities, suggesting distinct physiological interpretations. These findings enhance our understanding of ASD's neurobiological basis and offer new directions for clinical diagnosis.
Related papers
- A Learnable Counter-condition Analysis Framework for Functional
Connectivity-based Neurological Disorder Diagnosis [8.1410193893176]
We propose a novel unified framework that systemically integrates diagnoses (i.e., feature selection and feature extraction) and explanations.
Last but not least, our framework provides a novel explanatory power for neuroscientific interpretation, also termed counter-condition analysis.
arXiv Detail & Related papers (2023-10-06T01:33:47Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Hierarchical Graph Convolutional Network Built by Multiscale Atlases for
Brain Disorder Diagnosis Using Functional Connectivity [48.75665245214903]
We propose a novel framework to perform multiscale FCN analysis for brain disorder diagnosis.
We first use a set of well-defined multiscale atlases to compute multiscale FCNs.
Then, we utilize biologically meaningful brain hierarchical relationships among the regions in multiscale atlases to perform nodal pooling.
arXiv Detail & Related papers (2022-09-22T04:17:57Z) - Interpretable Vertebral Fracture Diagnosis [69.68641439851777]
Black-box neural network models learn clinically relevant features for fracture diagnosis.
This work identifies the concepts networks use for vertebral fracture diagnosis in CT images.
arXiv Detail & Related papers (2022-03-30T13:07:41Z) - Identifying Autism Spectrum Disorder Based on Individual-Aware
Down-Sampling and Multi-Modal Learning [4.310840361752551]
We propose a novel feature extraction method for fMRI that can learn a personalized lowe-resolution representation of the entire brain networking.
The present model has achieved a mean classification accuracy of 85.95% and a mean AUC of 0.92, which is better than the state-of-the-art methods.
arXiv Detail & Related papers (2021-09-19T14:22:55Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z) - Explainable and Scalable Machine-Learning Algorithms for Detection of
Autism Spectrum Disorder using fMRI Data [0.2578242050187029]
Our proposed deep-learning model ASD-DiagNet exhibits consistently high accuracy for classification of ASD brain scans from neurotypical scans.
Our method, called Auto-ASD-Network, uses a combination of deep-learning and Support Vector Machines (SVM) to classify ASD scans from neurotypical scans.
arXiv Detail & Related papers (2020-03-02T18:20:44Z) - Learning Multi-resolution Graph Edge Embedding for Discovering Brain Network Dysfunction in Neurological Disorders [10.12649945620901]
We propose Multi-resolution Edge Network (MENET) to detect disease-specific connectomic benchmarks.
MENET accurately predicts diagnostic labels and identifies brain connectivities highly associated with neurological disorders.
arXiv Detail & Related papers (2019-12-03T03:46:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.