Sylber: Syllabic Embedding Representation of Speech from Raw Audio
- URL: http://arxiv.org/abs/2410.07168v2
- Date: Sun, 02 Mar 2025 09:16:05 GMT
- Title: Sylber: Syllabic Embedding Representation of Speech from Raw Audio
- Authors: Cheol Jun Cho, Nicholas Lee, Akshat Gupta, Dhruv Agarwal, Ethan Chen, Alan W Black, Gopala K. Anumanchipalli,
- Abstract summary: We propose a new model, Sylber, that produces speech representations with clean and robust syllabic structure.<n>Specifically, we propose a self-supervised learning framework that bootstraps syllabic embeddings by distilling from its own initial unsupervised syllabic segmentation.<n>This results in a highly structured representation of speech features, offering three key benefits: 1) a fast, linear-time syllable segmentation algorithm, 2) efficient syllabic tokenization with an average of 4.27 tokens per second, and 3) novel phonological units suited for efficient spoken language modeling.
- Score: 25.703703711031178
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Syllables are compositional units of spoken language that efficiently structure human speech perception and production. However, current neural speech representations lack such structure, resulting in dense token sequences that are costly to process. To bridge this gap, we propose a new model, Sylber, that produces speech representations with clean and robust syllabic structure. Specifically, we propose a self-supervised learning (SSL) framework that bootstraps syllabic embeddings by distilling from its own initial unsupervised syllabic segmentation. This results in a highly structured representation of speech features, offering three key benefits: 1) a fast, linear-time syllable segmentation algorithm, 2) efficient syllabic tokenization with an average of 4.27 tokens per second, and 3) novel phonological units suited for efficient spoken language modeling. Our proposed segmentation method is highly robust and generalizes to out-of-domain data and unseen languages without any tuning. By training token-to-speech generative models, fully intelligible speech can be reconstructed from Sylber tokens with a significantly lower bitrate than baseline SSL tokens. This suggests that our model effectively compresses speech into a compact sequence of tokens with minimal information loss. Lastly, we demonstrate that categorical perception-a linguistic phenomenon in speech perception-emerges naturally in Sylber, making the embedding space more categorical and sparse than previous speech features and thus supporting the high efficiency of our tokenization. Together, we present a novel SSL approach for representing speech as syllables, with significant potential for efficient speech tokenization and spoken language modeling.
Related papers
- Universal Speech Token Learning via Low-Bitrate Neural Codec and Pretrained Representations [23.059241057567956]
This paper unifies two types of tokens and proposes the UniCodec, a universal speech token learning that encapsulates all semantics of speech.
A low-bitrate neural is leveraged to learn such disentangled discrete representations at global and local scales, with knowledge distilled from self-supervised learned features.
arXiv Detail & Related papers (2025-03-15T12:50:43Z) - SyllableLM: Learning Coarse Semantic Units for Speech Language Models [21.762112843104028]
We introduce a controllable self-supervised technique to merge speech representations into coarser syllable-like units.
Our method produces controllable-rate semantic units at as low as 5Hz and 60bps and SotA inc segmentation and clustering.
SyllableLM achieves significant improvements in efficiency with a 30x reduction in training compute and a 4x wall-clock inference speedup.
arXiv Detail & Related papers (2024-10-05T04:29:55Z) - Moshi: a speech-text foundation model for real-time dialogue [78.88479749811376]
Current systems for spoken dialogue rely on pipelines independent voice activity detection and text-to-speech.
We show how Moshi Moshi can provide streaming speech recognition and text-to-speech.
Our resulting model is first real-time full spoken large language model modality.
arXiv Detail & Related papers (2024-09-17T17:55:39Z) - Improving Spoken Language Modeling with Phoneme Classification: A Simple Fine-tuning Approach [14.5696754689252]
Recent progress in Spoken Language Modeling has shown that learning language directly from speech is feasible.
We show that fine-tuning speech representation models on phoneme classification leads to more context-invariant representations.
arXiv Detail & Related papers (2024-09-16T10:29:15Z) - Self-Supervised Syllable Discovery Based on Speaker-Disentangled HuBERT [10.18337180909434]
Self-supervised speech representation learning has become essential for extracting meaningful features from untranscribed audio.
We propose a speech-only self-supervised fine-tuning approach that separates syllabic units from speaker information.
arXiv Detail & Related papers (2024-09-16T09:07:08Z) - dMel: Speech Tokenization made Simple [19.169460770473908]
We show that discretizing mel-filterbank channels into discrete intensity bins produces a simple representation (dMel)
Our results demonstrate the effectiveness of dMel in achieving high performance on both tasks within a unified framework.
arXiv Detail & Related papers (2024-07-22T17:51:53Z) - CosyVoice: A Scalable Multilingual Zero-shot Text-to-speech Synthesizer based on Supervised Semantic Tokens [49.569695524535454]
We propose to represent speech with supervised semantic tokens, which are derived from a multilingual speech recognition model by inserting vector quantization into the encoder.
Based on the tokens, we further propose a scalable zero-shot TTS synthesizer, CosyVoice, which consists of an LLM for text-to-token generation and a conditional flow matching model for token-to-speech synthesis.
arXiv Detail & Related papers (2024-07-07T15:16:19Z) - SpeechAlign: Aligning Speech Generation to Human Preferences [51.684183257809075]
We introduce SpeechAlign, an iterative self-improvement strategy that aligns speech language models to human preferences.
We show that SpeechAlign can bridge the distribution gap and facilitate continuous self-improvement of the speech language model.
arXiv Detail & Related papers (2024-04-08T15:21:17Z) - SD-HuBERT: Sentence-Level Self-Distillation Induces Syllabic
Organization in HuBERT [49.06057768982775]
We show that a syllabic organization emerges in learning sentence-level representation of speech.
We propose a new benchmark task, Spoken Speech ABX, for evaluating sentence-level representation of speech.
arXiv Detail & Related papers (2023-10-16T20:05:36Z) - SpeechTokenizer: Unified Speech Tokenizer for Speech Large Language
Models [58.996653700982556]
Existing speech tokens are not specifically designed for speech language modeling.
We propose SpeechTokenizer, a unified speech tokenizer for speech large language models.
Experiments show that SpeechTokenizer performs comparably to EnCodec in speech reconstruction and demonstrates strong performance on the SLMTokBench benchmark.
arXiv Detail & Related papers (2023-08-31T12:53:09Z) - Syllable Discovery and Cross-Lingual Generalization in a Visually
Grounded, Self-Supervised Speech Model [21.286529902957724]
We show that representations capturing syllabic units emerge when training a self-supervised speech model with a visually-grounded training objective.
We show that our model not only outperforms a state-of-the-art syllabic segmentation method on the language it was trained on (English), but also generalizes in a zero-shot fashion to Estonian.
arXiv Detail & Related papers (2023-05-19T05:19:04Z) - token2vec: A Joint Self-Supervised Pre-training Framework Using Unpaired
Speech and Text [65.04385919645395]
token2vec is a novel joint pre-training framework for unpaired speech and text based on discrete representations of speech.
Experiments show that token2vec is significantly superior to various speech-only pre-training baselines, with up to 17.7% relative WER reduction.
arXiv Detail & Related papers (2022-10-30T06:38:19Z) - SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data [100.46303484627045]
We propose a cross-modal Speech and Language Model (SpeechLM) to align speech and text pre-training with a pre-defined unified representation.
Specifically, we introduce two alternative discrete tokenizers to bridge the speech and text modalities.
We evaluate SpeechLM on various spoken language processing tasks including speech recognition, speech translation, and universal representation evaluation framework SUPERB.
arXiv Detail & Related papers (2022-09-30T09:12:10Z) - TranSpeech: Speech-to-Speech Translation With Bilateral Perturbation [61.564874831498145]
TranSpeech is a speech-to-speech translation model with bilateral perturbation.
We establish a non-autoregressive S2ST technique, which repeatedly masks and predicts unit choices.
TranSpeech shows a significant improvement in inference latency, enabling speedup up to 21.4x than autoregressive technique.
arXiv Detail & Related papers (2022-05-25T06:34:14Z) - Self-Supervised Speech Representation Learning: A Review [105.1545308184483]
Self-supervised representation learning methods promise a single universal model that would benefit a wide variety of tasks and domains.
Speech representation learning is experiencing similar progress in three main categories: generative, contrastive, and predictive methods.
This review presents approaches for self-supervised speech representation learning and their connection to other research areas.
arXiv Detail & Related papers (2022-05-21T16:52:57Z) - Tokenwise Contrastive Pretraining for Finer Speech-to-BERT Alignment in
End-to-End Speech-to-Intent Systems [31.18865184576272]
This work is a step towards doing the same in a much more efficient and fine-grained manner where we align speech embeddings and BERT embeddings on a token-by-token basis.
We introduce a simple yet novel technique that uses a cross-modal attention mechanism to extract token-level contextual embeddings from a speech encoder.
Fine-tuning such a pretrained model to perform intent recognition using speech directly yields state-of-the-art performance on two widely used SLU datasets.
arXiv Detail & Related papers (2022-04-11T15:24:25Z) - Direct speech-to-speech translation with discrete units [64.19830539866072]
We present a direct speech-to-speech translation (S2ST) model that translates speech from one language to speech in another language without relying on intermediate text generation.
We propose to predict the self-supervised discrete representations learned from an unlabeled speech corpus instead.
When target text transcripts are available, we design a multitask learning framework with joint speech and text training that enables the model to generate dual mode output (speech and text) simultaneously in the same inference pass.
arXiv Detail & Related papers (2021-07-12T17:40:43Z) - Bridging the Modality Gap for Speech-to-Text Translation [57.47099674461832]
End-to-end speech translation aims to translate speech in one language into text in another language via an end-to-end way.
Most existing methods employ an encoder-decoder structure with a single encoder to learn acoustic representation and semantic information simultaneously.
We propose a Speech-to-Text Adaptation for Speech Translation model which aims to improve the end-to-end model performance by bridging the modality gap between speech and text.
arXiv Detail & Related papers (2020-10-28T12:33:04Z) - Disentangled Speech Embeddings using Cross-modal Self-supervision [119.94362407747437]
We develop a self-supervised learning objective that exploits the natural cross-modal synchrony between faces and audio in video.
We construct a two-stream architecture which: (1) shares low-level features common to both representations; and (2) provides a natural mechanism for explicitly disentangling these factors.
arXiv Detail & Related papers (2020-02-20T14:13:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.