論文の概要: MM-Ego: Towards Building Egocentric Multimodal LLMs
- arxiv url: http://arxiv.org/abs/2410.07177v1
- Date: Wed, 9 Oct 2024 17:59:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 21:46:48.778425
- Title: MM-Ego: Towards Building Egocentric Multimodal LLMs
- Title(参考訳): MM-Ego:Egocentric Multimodal LLMの構築に向けて
- Authors: Hanrong Ye, Haotian Zhang, Erik Daxberger, Lin Chen, Zongyu Lin, Yanghao Li, Bowen Zhang, Haoxuan You, Dan Xu, Zhe Gan, Jiasen Lu, Yinfei Yang,
- Abstract要約: 本研究の目的は,エゴセントリックな映像理解のためのマルチモーダル基盤モデルの構築である。
我々は,人間による注釈付きデータに基づいて,30秒から1時間に及ぶエゴセントリックビデオの高品質なQAサンプルを効率よく生成するデータエンジンを開発した。
我々は、629の動画と7,026の質問でエゴセントリックなQAベンチマークを作成し、様々な長さのビデオで視覚的詳細を認識・記憶するモデルの能力を評価する。
- 参考スコア(独自算出の注目度): 72.47344411599322
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This research aims to comprehensively explore building a multimodal foundation model for egocentric video understanding. To achieve this goal, we work on three fronts. First, as there is a lack of QA data for egocentric video understanding, we develop a data engine that efficiently generates 7M high-quality QA samples for egocentric videos ranging from 30 seconds to one hour long, based on human-annotated data. This is currently the largest egocentric QA dataset. Second, we contribute a challenging egocentric QA benchmark with 629 videos and 7,026 questions to evaluate the models' ability in recognizing and memorizing visual details across videos of varying lengths. We introduce a new de-biasing evaluation method to help mitigate the unavoidable language bias present in the models being evaluated. Third, we propose a specialized multimodal architecture featuring a novel "Memory Pointer Prompting" mechanism. This design includes a global glimpse step to gain an overarching understanding of the entire video and identify key visual information, followed by a fallback step that utilizes the key visual information to generate responses. This enables the model to more effectively comprehend extended video content. With the data, benchmark, and model, we successfully build MM-Ego, an egocentric multimodal LLM that shows powerful performance on egocentric video understanding.
- Abstract(参考訳): 本研究の目的は,エゴセントリックな映像理解のためのマルチモーダル基盤モデルの構築を包括的に検討することである。
この目標を達成するために、私たちは3つの側面に取り組んでいます。
まず,エゴセントリックなビデオ理解のためのQAデータが不足しているため,人間による注釈付きデータに基づいて,30秒から1時間に及ぶエゴセントリックなビデオに対して,高品質な7MのQAサンプルを効率よく生成するデータエンジンを開発した。
これは現在、最もエゴセントリックなQAデータセットである。
第2に、629の動画と7,026の質問でエゴセントリックなQAベンチマークを作成し、様々な長さの動画の視覚的詳細を認識・記憶するモデルの能力を評価する。
本稿では,評価対象モデルに存在する回避不能な言語バイアスを軽減するために,新しい非バイアス評価手法を提案する。
第3に,新しい「メモリポインタ・プロンプティング」機構を特徴とする,特殊なマルチモーダルアーキテクチャを提案する。
このデザインには、ビデオ全体に対する理解を深め、主要な視覚情報を識別するグローバルなステップが含まれており、その後、キービジュアル情報を利用して応答を生成するフォールバックステップが続く。
これにより、拡張されたビデオコンテンツをより効果的に理解することができる。
データ、ベンチマーク、モデルを用いて、エゴセントリックなマルチモーダルLLMであるMM-Egoを成功させ、エゴセントリックなビデオ理解における強力なパフォーマンスを示す。
関連論文リスト
- VidEgoThink: Assessing Egocentric Video Understanding Capabilities for Embodied AI [17.763461523794806]
VidEgoThinkは、Embodied AIでエゴセントリックなビデオ理解能力を評価するためのベンチマークである。
我々は,ビデオ質問応答,階層計画,視覚的グラウンド,報酬モデリングの4つの重要な相互関連タスクを設計する。
APIベースのMLLM,オープンソースイメージベースのMLLM,オープンソースビデオベースのMLLMの3種類のモデルで広範な実験を行った。
論文 参考訳(メタデータ) (2024-10-15T14:08:53Z) - EAGLE: Egocentric AGgregated Language-video Engine [34.60423566630983]
我々は,Eagle(Egocentric AGgregated Language-video Engine)モデルとEagle-400Kデータセットを導入し,エゴセントリックなビデオ理解タスクを統合する統一フレームワークを提供する。
エゴセントリックなビデオ分析は、一人称視点から人間の活動や意図を理解するための新たな洞察をもたらす。
論文 参考訳(メタデータ) (2024-09-26T04:17:27Z) - AMEGO: Active Memory from long EGOcentric videos [26.04157621755452]
非常に長いエゴセントリックなビデオの理解を深めるための新しいアプローチであるAMEGOを紹介する。
AMEGOは、人間が単一の視聴から情報を維持する能力に触発され、一つの自我中心のビデオから自己完結した表現を構築することに焦点を当てる。
この表現はセマンティックフリーであり、視覚的コンテンツ全体を再処理することなく、複数のクエリを容易にする。
論文 参考訳(メタデータ) (2024-09-17T06:18:47Z) - AlanaVLM: A Multimodal Embodied AI Foundation Model for Egocentric Video Understanding [44.79843213164787]
身体化されたAIパーソナルアシスタントは、人間と効果的に協力するために具体的理解を必要とする。
現在のビジョンランゲージモデル(VLM)は主に、エゴセントリックな体験の豊かさを無視して、第三者の視点ビデオに焦点を当てている。
本稿では,ビデオキャプションにおけるVLMのトレーニングや,エゴセントリックなビデオに特有の質問応答を行うためのEgocentric Video Understanding dataset(EVUD)を紹介する。
本稿では,EVUD 上でパラメータ効率の高い手法を用いて訓練した 7B パラメータ VLM である AlanaVLM を提案する。
論文 参考訳(メタデータ) (2024-06-19T20:14:14Z) - CinePile: A Long Video Question Answering Dataset and Benchmark [55.30860239555001]
我々は、CinePileという新しいデータセットとベンチマークを提示する。
包括的データセットは305,000の多重選択質問(MCQ)から構成されており、様々な視覚的・マルチモーダル的な側面をカバーしている。
トレーニングスプリットに関して、オープンソースのVideo-LLMを微調整し、データセットのテストスプリット上で、オープンソースとプロプライエタリなビデオ中心LLMの両方を評価しました。
論文 参考訳(メタデータ) (2024-05-14T17:59:02Z) - How Good is my Video LMM? Complex Video Reasoning and Robustness Evaluation Suite for Video-LMMs [98.37571997794072]
CVRR-ES(Complex Video Reasoning and Robustness Evaluation Suite)について紹介する。
CVRR-ESは、11種類の実世界のビデオ次元にわたるビデオLMMの性能を包括的に評価する。
我々の発見は、次世代の人間中心AIシステムを構築する上で貴重な洞察を提供する。
論文 参考訳(メタデータ) (2024-05-06T17:59:45Z) - WorldQA: Multimodal World Knowledge in Videos through Long-Chain Reasoning [49.72868038180909]
マルチモーダル世界モデルの境界を押し上げるために設計されたビデオデータセットであるWorldQAを紹介する。
質問の定式化に不可欠な5つの世界知識を同定する。
我々は、専門家の知識をコヒーレントな推論チェーンに合成するためのエージェントであるWorldRetrieverを紹介する。
論文 参考訳(メタデータ) (2024-05-06T08:42:34Z) - Retrieval-Augmented Egocentric Video Captioning [53.2951243928289]
EgoInstructor(エゴインストラクタ)は、意味的に関連する第三者の指導ビデオを自動的に検索する、検索拡張マルチモーダルキャプションモデルである。
我々は、エゴセントリックでエゴセントリックなビデオ機能を引き出す新しいEgoExoNCE損失でクロスビュー検索モジュールをトレーニングし、同様のアクションを記述した共有テキスト機能にアライメントすることで、より近づいた。
論文 参考訳(メタデータ) (2024-01-01T15:31:06Z) - Grounded Question-Answering in Long Egocentric Videos [39.281013854331285]
長い、エゴセントリックなビデオで、個人やロボットが自分の過去の視覚的体験について尋ねることができる。
このタスクは、広範囲なビデオコンテンツ内での時間的グラウンドクエリの複雑さを含む、ユニークな課題を提示する。
提案手法は,クエリグラウンディングと応答を統一モデルに統合することにより,誤りの伝播を低減することで,これらの課題に対処する。
論文 参考訳(メタデータ) (2023-12-11T16:31:55Z) - Dense-Caption Matching and Frame-Selection Gating for Temporal
Localization in VideoQA [96.10612095576333]
本稿では,マルチモーダルな入力源を効果的に統合し,時間的関連情報から質問に答えるビデオ質問応答モデルを提案する。
また,2レベルアテンション(単語・オブジェクト・フレームレベル),異なるソース(ビデオ・高密度キャプション)に対するマルチヘッド自己統合,ゲートへのより関連性の高い情報伝達などで構成されている。
当社のモデルは,各モデルコンポーネントが大きな利益をもたらす,難易度の高いTVQAデータセット上で評価され,全体的なモデルでは,最先端のモデルよりも大きなマージンで優れています。
論文 参考訳(メタデータ) (2020-05-13T16:35:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。