Margin-bounded Confidence Scores for Out-of-Distribution Detection
- URL: http://arxiv.org/abs/2410.07185v1
- Date: Sun, 22 Sep 2024 05:40:25 GMT
- Title: Margin-bounded Confidence Scores for Out-of-Distribution Detection
- Authors: Lakpa D. Tamang, Mohamed Reda Bouadjenek, Richard Dazeley, Sunil Aryal,
- Abstract summary: We propose a novel method called Margin bounded Confidence Scores (MaCS) to address the nontrivial OOD detection problem.
MaCS enlarges the disparity between ID and OOD scores, which in turn makes the decision boundary more compact.
Experiments on various benchmark datasets for image classification tasks demonstrate the effectiveness of the proposed method.
- Score: 2.373572816573706
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In many critical Machine Learning applications, such as autonomous driving and medical image diagnosis, the detection of out-of-distribution (OOD) samples is as crucial as accurately classifying in-distribution (ID) inputs. Recently Outlier Exposure (OE) based methods have shown promising results in detecting OOD inputs via model fine-tuning with auxiliary outlier data. However, most of the previous OE-based approaches emphasize more on synthesizing extra outlier samples or introducing regularization to diversify OOD sample space, which is rather unquantifiable in practice. In this work, we propose a novel and straightforward method called Margin bounded Confidence Scores (MaCS) to address the nontrivial OOD detection problem by enlarging the disparity between ID and OOD scores, which in turn makes the decision boundary more compact facilitating effective segregation with a simple threshold. Specifically, we augment the learning objective of an OE regularized classifier with a supplementary constraint, which penalizes high confidence scores for OOD inputs compared to that of ID and significantly enhances the OOD detection performance while maintaining the ID classification accuracy. Extensive experiments on various benchmark datasets for image classification tasks demonstrate the effectiveness of the proposed method by significantly outperforming state-of-the-art (S.O.T.A) methods on various benchmarking metrics. The code is publicly available at https://github.com/lakpa-tamang9/margin_ood
Related papers
- Going Beyond Conventional OOD Detection [0.0]
Out-of-distribution (OOD) detection is critical to ensure the safe deployment of deep learning models in critical applications.
We present a unified Approach to Spurimatious, fine-grained, and Conventional OOD Detection (ASCOOD)
Our approach effectively mitigates the impact of spurious correlations and encourages capturing fine-grained attributes.
arXiv Detail & Related papers (2024-11-16T13:04:52Z) - What If the Input is Expanded in OOD Detection? [77.37433624869857]
Out-of-distribution (OOD) detection aims to identify OOD inputs from unknown classes.
Various scoring functions are proposed to distinguish it from in-distribution (ID) data.
We introduce a novel perspective, i.e., employing different common corruptions on the input space.
arXiv Detail & Related papers (2024-10-24T06:47:28Z) - Diffusion based Semantic Outlier Generation via Nuisance Awareness for Out-of-Distribution Detection [9.936136347796413]
Out-of-distribution (OOD) detection has recently shown promising results through training with synthetic OOD datasets.
We propose a novel framework, Semantic Outlier generation via Nuisance Awareness (SONA), which notably produces challenging outliers.
Our approach incorporates SONA guidance, providing separate control over semantic and nuisance regions of ID samples.
arXiv Detail & Related papers (2024-08-27T07:52:44Z) - Rethinking the Evaluation of Out-of-Distribution Detection: A Sorites Paradox [70.57120710151105]
Most existing out-of-distribution (OOD) detection benchmarks classify samples with novel labels as the OOD data.
Some marginal OOD samples actually have close semantic contents to the in-distribution (ID) sample, which makes determining the OOD sample a Sorites Paradox.
We construct a benchmark named Incremental Shift OOD (IS-OOD) to address the issue.
arXiv Detail & Related papers (2024-06-14T09:27:56Z) - Diversified Outlier Exposure for Out-of-Distribution Detection via
Informative Extrapolation [110.34982764201689]
Out-of-distribution (OOD) detection is important for deploying reliable machine learning models on real-world applications.
Recent advances in outlier exposure have shown promising results on OOD detection via fine-tuning model with informatively sampled auxiliary outliers.
We propose a novel framework, namely, Diversified Outlier Exposure (DivOE), for effective OOD detection via informative extrapolation based on the given auxiliary outliers.
arXiv Detail & Related papers (2023-10-21T07:16:09Z) - From Global to Local: Multi-scale Out-of-distribution Detection [129.37607313927458]
Out-of-distribution (OOD) detection aims to detect "unknown" data whose labels have not been seen during the in-distribution (ID) training process.
Recent progress in representation learning gives rise to distance-based OOD detection.
We propose Multi-scale OOD DEtection (MODE), a first framework leveraging both global visual information and local region details.
arXiv Detail & Related papers (2023-08-20T11:56:25Z) - Beyond AUROC & co. for evaluating out-of-distribution detection
performance [50.88341818412508]
Given their relevance for safe(r) AI, it is important to examine whether the basis for comparing OOD detection methods is consistent with practical needs.
We propose a new metric - Area Under the Threshold Curve (AUTC), which explicitly penalizes poor separation between ID and OOD samples.
arXiv Detail & Related papers (2023-06-26T12:51:32Z) - Augmenting Softmax Information for Selective Classification with
Out-of-Distribution Data [7.221206118679026]
We show that existing post-hoc methods perform quite differently compared to when evaluated only on OOD detection.
We propose a novel method for SCOD, Softmax Information Retaining Combination (SIRC), that augments softmax-based confidence scores with feature-agnostic information.
Experiments on a wide variety of ImageNet-scale datasets and convolutional neural network architectures show that SIRC is able to consistently match or outperform the baseline for SCOD.
arXiv Detail & Related papers (2022-07-15T14:39:57Z) - Breaking Down Out-of-Distribution Detection: Many Methods Based on OOD
Training Data Estimate a Combination of the Same Core Quantities [104.02531442035483]
The goal of this paper is to recognize common objectives as well as to identify the implicit scoring functions of different OOD detection methods.
We show that binary discrimination between in- and (different) out-distributions is equivalent to several distinct formulations of the OOD detection problem.
We also show that the confidence loss which is used by Outlier Exposure has an implicit scoring function which differs in a non-trivial fashion from the theoretically optimal scoring function.
arXiv Detail & Related papers (2022-06-20T16:32:49Z) - Contrastive Training for Improved Out-of-Distribution Detection [36.61315534166451]
This paper proposes and investigates the use of contrastive training to boost OOD detection performance.
We show in extensive experiments that contrastive training significantly helps OOD detection performance on a number of common benchmarks.
arXiv Detail & Related papers (2020-07-10T18:40:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.