Diffusion based Semantic Outlier Generation via Nuisance Awareness for Out-of-Distribution Detection
- URL: http://arxiv.org/abs/2408.14841v1
- Date: Tue, 27 Aug 2024 07:52:44 GMT
- Title: Diffusion based Semantic Outlier Generation via Nuisance Awareness for Out-of-Distribution Detection
- Authors: Suhee Yoon, Sanghyu Yoon, Hankook Lee, Ye Seul Sim, Sungik Choi, Kyungeun Lee, Hye-Seung Cho, Woohyung Lim,
- Abstract summary: Out-of-distribution (OOD) detection has recently shown promising results through training with synthetic OOD datasets.
We propose a novel framework, Semantic Outlier generation via Nuisance Awareness (SONA), which notably produces challenging outliers.
Our approach incorporates SONA guidance, providing separate control over semantic and nuisance regions of ID samples.
- Score: 9.936136347796413
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Out-of-distribution (OOD) detection, which determines whether a given sample is part of the in-distribution (ID), has recently shown promising results through training with synthetic OOD datasets. Nonetheless, existing methods often produce outliers that are considerably distant from the ID, showing limited efficacy for capturing subtle distinctions between ID and OOD. To address these issues, we propose a novel framework, Semantic Outlier generation via Nuisance Awareness (SONA), which notably produces challenging outliers by directly leveraging pixel-space ID samples through diffusion models. Our approach incorporates SONA guidance, providing separate control over semantic and nuisance regions of ID samples. Thereby, the generated outliers achieve two crucial properties: (i) they present explicit semantic-discrepant information, while (ii) maintaining various levels of nuisance resemblance with ID. Furthermore, the improved OOD detector training with SONA outliers facilitates learning with a focus on semantic distinctions. Extensive experiments demonstrate the effectiveness of our framework, achieving an impressive AUROC of 88% on near-OOD datasets, which surpasses the performance of baseline methods by a significant margin of approximately 6%.
Related papers
- Going Beyond Conventional OOD Detection [0.0]
Out-of-distribution (OOD) detection is critical to ensure the safe deployment of deep learning models in critical applications.
We present a unified Approach to Spurimatious, fine-grained, and Conventional OOD Detection (ASCOOD)
Our approach effectively mitigates the impact of spurious correlations and encourages capturing fine-grained attributes.
arXiv Detail & Related papers (2024-11-16T13:04:52Z) - What If the Input is Expanded in OOD Detection? [77.37433624869857]
Out-of-distribution (OOD) detection aims to identify OOD inputs from unknown classes.
Various scoring functions are proposed to distinguish it from in-distribution (ID) data.
We introduce a novel perspective, i.e., employing different common corruptions on the input space.
arXiv Detail & Related papers (2024-10-24T06:47:28Z) - Margin-bounded Confidence Scores for Out-of-Distribution Detection [2.373572816573706]
We propose a novel method called Margin bounded Confidence Scores (MaCS) to address the nontrivial OOD detection problem.
MaCS enlarges the disparity between ID and OOD scores, which in turn makes the decision boundary more compact.
Experiments on various benchmark datasets for image classification tasks demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2024-09-22T05:40:25Z) - Rethinking the Evaluation of Out-of-Distribution Detection: A Sorites Paradox [70.57120710151105]
Most existing out-of-distribution (OOD) detection benchmarks classify samples with novel labels as the OOD data.
Some marginal OOD samples actually have close semantic contents to the in-distribution (ID) sample, which makes determining the OOD sample a Sorites Paradox.
We construct a benchmark named Incremental Shift OOD (IS-OOD) to address the issue.
arXiv Detail & Related papers (2024-06-14T09:27:56Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
This paper addresses the challenging task of long-tailed OOD detection.
The main difficulty lies in distinguishing OOD data from samples belonging to the tail classes.
We propose two simple ideas: (1) Expanding the in-distribution class space by introducing multiple abstention classes, and (2) Augmenting the context-limited tail classes by overlaying images onto the context-rich OOD data.
arXiv Detail & Related papers (2023-12-14T13:47:13Z) - ID-like Prompt Learning for Few-Shot Out-of-Distribution Detection [47.16254775587534]
We propose a novel OOD detection framework that discovers idlike outliers using CLIP citeDBLP:conf/icml/RadfordKHRGASAM21.
Benefiting from the powerful CLIP, we only need a small number of ID samples to learn the prompts of the model.
Our method achieves superior few-shot learning performance on various real-world image datasets.
arXiv Detail & Related papers (2023-11-26T09:06:40Z) - Diversified Outlier Exposure for Out-of-Distribution Detection via
Informative Extrapolation [110.34982764201689]
Out-of-distribution (OOD) detection is important for deploying reliable machine learning models on real-world applications.
Recent advances in outlier exposure have shown promising results on OOD detection via fine-tuning model with informatively sampled auxiliary outliers.
We propose a novel framework, namely, Diversified Outlier Exposure (DivOE), for effective OOD detection via informative extrapolation based on the given auxiliary outliers.
arXiv Detail & Related papers (2023-10-21T07:16:09Z) - From Global to Local: Multi-scale Out-of-distribution Detection [129.37607313927458]
Out-of-distribution (OOD) detection aims to detect "unknown" data whose labels have not been seen during the in-distribution (ID) training process.
Recent progress in representation learning gives rise to distance-based OOD detection.
We propose Multi-scale OOD DEtection (MODE), a first framework leveraging both global visual information and local region details.
arXiv Detail & Related papers (2023-08-20T11:56:25Z) - Supervision Adaptation Balancing In-distribution Generalization and
Out-of-distribution Detection [36.66825830101456]
In-distribution (ID) and out-of-distribution (OOD) samples can lead to textitdistributional vulnerability in deep neural networks.
We introduce a novel textitsupervision adaptation approach to generate adaptive supervision information for OOD samples, making them more compatible with ID samples.
arXiv Detail & Related papers (2022-06-19T11:16:44Z) - No Shifted Augmentations (NSA): compact distributions for robust
self-supervised Anomaly Detection [4.243926243206826]
Unsupervised Anomaly detection (AD) requires building a notion of normalcy, distinguishing in-distribution (ID) and out-of-distribution (OOD) data.
We investigate how the emph geometrical compactness of the ID feature distribution makes isolating and detecting outliers easier.
We propose novel architectural modifications to the self-supervised feature learning step, that enable such compact distributions for ID data to be learned.
arXiv Detail & Related papers (2022-03-19T15:55:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.