Curb Your Attention: Causal Attention Gating for Robust Trajectory Prediction in Autonomous Driving
- URL: http://arxiv.org/abs/2410.07191v2
- Date: Thu, 06 Mar 2025 23:13:01 GMT
- Title: Curb Your Attention: Causal Attention Gating for Robust Trajectory Prediction in Autonomous Driving
- Authors: Ehsan Ahmadi, Ray Mercurius, Soheil Alizadeh, Kasra Rezaee, Amir Rasouli,
- Abstract summary: Trajectory prediction models in autonomous driving are vulnerable to perturbations from non-causal agents.<n>We propose $textitCausal tRajecTory predICtion$ $textbf(CRiTIC)$ to identify inter-agent causal relations over a window of past time steps.
- Score: 6.897286554827871
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trajectory prediction models in autonomous driving are vulnerable to perturbations from non-causal agents whose actions should not affect the ego-agent's behavior. Such perturbations can lead to incorrect predictions of other agents' trajectories, potentially compromising the safety and efficiency of the ego-vehicle's decision-making process. Motivated by this challenge, we propose $\textit{Causal tRajecTory predICtion}$ $\textbf{(CRiTIC)}$, a novel model that utilizes a $\textit{Causal Discovery Network}$ to identify inter-agent causal relations over a window of past time steps. To incorporate discovered causal relationships, we propose a novel $\textit{Causal Attention Gating}$ mechanism to selectively filter information in the proposed Transformer-based architecture. We conduct extensive experiments on two autonomous driving benchmark datasets to evaluate the robustness of our model against non-causal perturbations and its generalization capacity. Our results indicate that the robustness of predictions can be improved by up to $\textbf{54%}$ without a significant detriment to prediction accuracy. Lastly, we demonstrate the superior domain generalizability of the proposed model, which achieves up to $\textbf{29%}$ improvement in cross-domain performance. These results underscore the potential of our model to enhance both robustness and generalization capacity for trajectory prediction in diverse autonomous driving domains. Further details can be found on our project page: https://ehsan-ami.github.io/critic.
Related papers
- Act-With-Think: Chunk Auto-Regressive Modeling for Generative Recommendation [49.45822979879046]
Generative recommendation (GR) typically encodes behavioral or semantic aspects of item information into discrete tokens.<n>We present Chunk AutoRegressive Modeling (CAR), a new generation paradigm following the decision pattern that users usually think semantic aspects of items.
arXiv Detail & Related papers (2025-06-30T09:13:54Z) - Towards Model Resistant to Transferable Adversarial Examples via Trigger Activation [95.3977252782181]
Adversarial examples, characterized by imperceptible perturbations, pose significant threats to deep neural networks by misleading their predictions.
We introduce a novel training paradigm aimed at enhancing robustness against transferable adversarial examples (TAEs) in a more efficient and effective way.
arXiv Detail & Related papers (2025-04-20T09:07:10Z) - Certified Human Trajectory Prediction [66.1736456453465]
Tray prediction plays an essential role in autonomous vehicles.
We propose a certification approach tailored for the task of trajectory prediction.
We address the inherent challenges associated with trajectory prediction, including unbounded outputs, and mutli-modality.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - Towards Generalizable and Interpretable Motion Prediction: A Deep
Variational Bayes Approach [54.429396802848224]
This paper proposes an interpretable generative model for motion prediction with robust generalizability to out-of-distribution cases.
For interpretability, the model achieves the target-driven motion prediction by estimating the spatial distribution of long-term destinations.
Experiments on motion prediction datasets validate that the fitted model can be interpretable and generalizable.
arXiv Detail & Related papers (2024-03-10T04:16:04Z) - Probabilistic Prediction of Longitudinal Trajectory Considering Driving
Heterogeneity with Interpretability [12.929047288003213]
This study proposes a trajectory prediction framework that combines Mixture Density Networks (MDN) and considers the driving heterogeneity to provide probabilistic and personalized predictions.
The proposed framework is tested based on a wide-range vehicle trajectory dataset.
arXiv Detail & Related papers (2023-12-19T12:56:56Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - ADAPT: Efficient Multi-Agent Trajectory Prediction with Adaptation [0.0]
ADAPT is a novel approach for jointly predicting the trajectories of all agents in the scene with dynamic weight learning.
Our approach outperforms state-of-the-art methods in both single-agent and multi-agent settings.
arXiv Detail & Related papers (2023-07-26T13:41:51Z) - Benchmark for Models Predicting Human Behavior in Gap Acceptance
Scenarios [4.801975818473341]
We develop a framework facilitating the evaluation of any model, by any metric, and in any scenario.
We then apply this framework to state-of-the-art prediction models, which all show themselves to be unreliable in the most safety-critical situations.
arXiv Detail & Related papers (2022-11-10T09:59:38Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
Trajectory prediction is essential for autonomous vehicles to plan correct and safe driving behaviors.
We devise an optimization-based adversarial attack framework to generate realistic adversarial trajectories.
Our attack can lead an AV to drive off road or collide into other vehicles in simulation.
arXiv Detail & Related papers (2022-09-19T03:34:59Z) - CausalAgents: A Robustness Benchmark for Motion Forecasting using Causal
Relationships [8.679073301435265]
We construct a new benchmark for evaluating and improving model robustness by applying perturbations to existing data.
We use these labels to perturb the data by deleting non-causal agents from the scene.
Under non-causal perturbations, we observe a $25$-$38%$ relative change in minADE as compared to the original.
arXiv Detail & Related papers (2022-07-07T21:28:23Z) - Control-Aware Prediction Objectives for Autonomous Driving [78.19515972466063]
We present control-aware prediction objectives (CAPOs) to evaluate the downstream effect of predictions on control without requiring the planner be differentiable.
We propose two types of importance weights that weight the predictive likelihood: one using an attention model between agents, and another based on control variation when exchanging predicted trajectories for ground truth trajectories.
arXiv Detail & Related papers (2022-04-28T07:37:21Z) - PreTR: Spatio-Temporal Non-Autoregressive Trajectory Prediction
Transformer [0.9786690381850356]
We introduce a model called PRediction Transformer (PReTR) that extracts features from the multi-agent scenes by employing a factorized-temporal attention module.
It shows less computational needs than previously studied models with empirically better results.
We leverage encoder-decoder Transformer networks for parallel decoding a set of learned object queries.
arXiv Detail & Related papers (2022-03-17T12:52:23Z) - TAE: A Semi-supervised Controllable Behavior-aware Trajectory Generator
and Predictor [3.6955256596550137]
Trajectory generation and prediction play important roles in planner evaluation and decision making for intelligent vehicles.
We propose a behavior-aware Trajectory Autoencoder (TAE) that explicitly models drivers' behavior.
Our model addresses trajectory generation and prediction in a unified architecture and benefits both tasks.
arXiv Detail & Related papers (2022-03-02T17:37:44Z) - RobustBench: a standardized adversarial robustness benchmark [84.50044645539305]
Key challenge in benchmarking robustness is that its evaluation is often error-prone leading to robustness overestimation.
We evaluate adversarial robustness with AutoAttack, an ensemble of white- and black-box attacks.
We analyze the impact of robustness on the performance on distribution shifts, calibration, out-of-distribution detection, fairness, privacy leakage, smoothness, and transferability.
arXiv Detail & Related papers (2020-10-19T17:06:18Z) - Inference in Bayesian Additive Vector Autoregressive Tree Models [0.0]
We propose combining Vector autoregressive ( VAR) models with Bayesian additive regression tree (BART) models.
The resulting BAVART model is capable of capturing arbitrary non-linear relations without much input from the researcher.
We apply our model to two datasets: the US term structure of interest rates and the Eurozone economy.
arXiv Detail & Related papers (2020-06-29T19:37:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.