CausalAgents: A Robustness Benchmark for Motion Forecasting using Causal
Relationships
- URL: http://arxiv.org/abs/2207.03586v1
- Date: Thu, 7 Jul 2022 21:28:23 GMT
- Title: CausalAgents: A Robustness Benchmark for Motion Forecasting using Causal
Relationships
- Authors: Rebecca Roelofs, Liting Sun, Ben Caine, Khaled S. Refaat, Ben Sapp,
Scott Ettinger, Wei Chai
- Abstract summary: We construct a new benchmark for evaluating and improving model robustness by applying perturbations to existing data.
We use these labels to perturb the data by deleting non-causal agents from the scene.
Under non-causal perturbations, we observe a $25$-$38%$ relative change in minADE as compared to the original.
- Score: 8.679073301435265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As machine learning models become increasingly prevalent in motion
forecasting systems for autonomous vehicles (AVs), it is critical that we
ensure that model predictions are safe and reliable. However, exhaustively
collecting and labeling the data necessary to fully test the long tail of rare
and challenging scenarios is difficult and expensive. In this work, we
construct a new benchmark for evaluating and improving model robustness by
applying perturbations to existing data. Specifically, we conduct an extensive
labeling effort to identify causal agents, or agents whose presence influences
human driver behavior in any way, in the Waymo Open Motion Dataset (WOMD), and
we use these labels to perturb the data by deleting non-causal agents from the
scene. We then evaluate a diverse set of state-of-the-art deep-learning model
architectures on our proposed benchmark and find that all models exhibit large
shifts under perturbation. Under non-causal perturbations, we observe a
$25$-$38\%$ relative change in minADE as compared to the original. We then
investigate techniques to improve model robustness, including increasing the
training dataset size and using targeted data augmentations that drop agents
throughout training. We plan to provide the causal agent labels as an
additional attribute to WOMD and release the robustness benchmarks to aid the
community in building more reliable and safe deep-learning models for motion
forecasting.
Related papers
- Transferable Adversarial Attacks on SAM and Its Downstream Models [87.23908485521439]
This paper explores the feasibility of adversarial attacking various downstream models fine-tuned from the segment anything model (SAM)
To enhance the effectiveness of the adversarial attack towards models fine-tuned on unknown datasets, we propose a universal meta-initialization (UMI) algorithm.
arXiv Detail & Related papers (2024-10-26T15:04:04Z) - Unsupervised Model Diagnosis [49.36194740479798]
This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
arXiv Detail & Related papers (2024-10-08T17:59:03Z) - Uncertainty-aware Human Mobility Modeling and Anomaly Detection [28.311683535974634]
We study how to model human agents' mobility behavior toward effective anomaly detection.
We use GPS data as a sequence stay-point events, each with a set of characterizingtemporal features.
Experiments on large expert-simulated datasets with tens of thousands of agents demonstrate the effectiveness of our model.
arXiv Detail & Related papers (2024-10-02T06:57:08Z) - A Cost-Aware Approach to Adversarial Robustness in Neural Networks [1.622320874892682]
We propose using accelerated failure time models to measure the effect of hardware choice, batch size, number of epochs, and test-set accuracy.
We evaluate several GPU types and use the Tree Parzen Estimator to maximize model robustness and minimize model run-time simultaneously.
arXiv Detail & Related papers (2024-09-11T20:43:59Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
We propose an Automatic Data Engine (AIDE) that automatically identifies issues, efficiently curates data, improves the model through auto-labeling, and verifies the model through generation of diverse scenarios.
We further establish a benchmark for open-world detection on AV datasets to comprehensively evaluate various learning paradigms, demonstrating our method's superior performance at a reduced cost.
arXiv Detail & Related papers (2024-03-26T04:27:56Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - A Guide for Practical Use of ADMG Causal Data Augmentation [0.0]
Causal data augmentation strategies have been pointed out as a solution to handle these challenges.
This paper experimentally analyzed the ADMG causal augmentation method considering different settings.
arXiv Detail & Related papers (2023-04-03T09:31:13Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - SRoUDA: Meta Self-training for Robust Unsupervised Domain Adaptation [25.939292305808934]
Unsupervised domain adaptation (UDA) can transfer knowledge learned from rich-label dataset to unlabeled target dataset.
In this paper, we present a new meta self-training pipeline, named SRoUDA, for improving adversarial robustness of UDA models.
arXiv Detail & Related papers (2022-12-12T14:25:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.