SpaRG: Sparsely Reconstructed Graphs for Generalizable fMRI Analysis
- URL: http://arxiv.org/abs/2410.07201v1
- Date: Tue, 24 Sep 2024 18:35:57 GMT
- Title: SpaRG: Sparsely Reconstructed Graphs for Generalizable fMRI Analysis
- Authors: Camila González, Yanis Miraoui, Yiran Fan, Ehsan Adeli, Kilian M. Pohl,
- Abstract summary: Deep learning can help uncover patterns in resting-state functional Magnetic Resonance Imaging (rsfMRI) associated with psychiatric disorders and personal traits.
Yet the problem of interpreting deep learning findings is rarely more evident than in fMRI analyses.
We propose a simple approach to mitigate these challenges grounded on sparsification and self-supervision.
- Score: 8.489318619991534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning can help uncover patterns in resting-state functional Magnetic Resonance Imaging (rs-fMRI) associated with psychiatric disorders and personal traits. Yet the problem of interpreting deep learning findings is rarely more evident than in fMRI analyses, as the data is sensitive to scanning effects and inherently difficult to visualize. We propose a simple approach to mitigate these challenges grounded on sparsification and self-supervision. Instead of extracting post-hoc feature attributions to uncover functional connections that are important to the target task, we identify a small subset of highly informative connections during training and occlude the rest. To this end, we jointly train a (1) sparse input mask, (2) variational autoencoder (VAE), and (3) downstream classifier in an end-to-end fashion. While we need a portion of labeled samples to train the classifier, we optimize the sparse mask and VAE with unlabeled data from additional acquisition sites, retaining only the input features that generalize well. We evaluate our method - Sparsely Reconstructed Graphs (SpaRG) - on the public ABIDE dataset for the task of sex classification, training with labeled cases from 18 sites and adapting the model to two additional out-of-distribution sites with a portion of unlabeled samples. For a relatively coarse parcellation (64 regions), SpaRG utilizes only 1% of the original connections while improving the classification accuracy across domains. Our code can be found at github.com/yanismiraoui/SpaRG.
Related papers
- Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
We present AdaSyn, a framework for domain adaptive synapse detection with weak point annotations.
In the WASPSYN challenge at I SBI 2023, our method ranks the 1st place.
arXiv Detail & Related papers (2023-08-31T05:05:53Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - Frequency Disentangled Learning for Segmentation of Midbrain Structures
from Quantitative Susceptibility Mapping Data [1.9150304734969674]
Deep models tend to fit the target function from low to high frequencies.
One often lacks sufficient samples for training deep segmentation models.
We propose a new training method based on frequency-domain disentanglement.
arXiv Detail & Related papers (2023-02-25T04:30:11Z) - Joint Edge-Model Sparse Learning is Provably Efficient for Graph Neural
Networks [89.28881869440433]
This paper provides the first theoretical characterization of joint edge-model sparse learning for graph neural networks (GNNs)
It proves analytically that both sampling important nodes and pruning neurons with the lowest-magnitude can reduce the sample complexity and improve convergence without compromising the test accuracy.
arXiv Detail & Related papers (2023-02-06T16:54:20Z) - Longitudinal detection of new MS lesions using Deep Learning [0.0]
We describe a deep-learning-based pipeline addressing the task of detecting and segmenting new MS lesions.
First, we propose to use transfer-learning from a model trained on a segmentation task using single time-points.
Second, we propose a data synthesis strategy to generate realistic longitudinal time-points with new lesions.
arXiv Detail & Related papers (2022-06-16T16:09:04Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - High-Order Information Matters: Learning Relation and Topology for
Occluded Person Re-Identification [84.43394420267794]
We propose a novel framework by learning high-order relation and topology information for discriminative features and robust alignment.
Our framework significantly outperforms state-of-the-art by6.5%mAP scores on Occluded-Duke dataset.
arXiv Detail & Related papers (2020-03-18T12:18:35Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
This work investigates the potential of autoencoder-extracted features to improve segmentation with a convolutional neural network.
A convolutional autoencoder was used to extract features from unlabeled data and a multi-scale, fully convolutional CNN was used to perform the target task of 3D liver segmentation in CT images.
arXiv Detail & Related papers (2020-03-17T20:20:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.