Frequency Disentangled Learning for Segmentation of Midbrain Structures
from Quantitative Susceptibility Mapping Data
- URL: http://arxiv.org/abs/2302.12980v1
- Date: Sat, 25 Feb 2023 04:30:11 GMT
- Title: Frequency Disentangled Learning for Segmentation of Midbrain Structures
from Quantitative Susceptibility Mapping Data
- Authors: Guanghui Fu, Gabriel Jimenez, Sophie Loizillon, Lydia Chougar, Didier
Dormont, Romain Valabregue, Ninon Burgos, St\'ephane Leh\'ericy, Daniel
Racoceanu, Olivier Colliot, the ICEBERG Study Group
- Abstract summary: Deep models tend to fit the target function from low to high frequencies.
One often lacks sufficient samples for training deep segmentation models.
We propose a new training method based on frequency-domain disentanglement.
- Score: 1.9150304734969674
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One often lacks sufficient annotated samples for training deep segmentation
models. This is in particular the case for less common imaging modalities such
as Quantitative Susceptibility Mapping (QSM). It has been shown that deep
models tend to fit the target function from low to high frequencies. One may
hypothesize that such property can be leveraged for better training of deep
learning models. In this paper, we exploit this property to propose a new
training method based on frequency-domain disentanglement. It consists of two
main steps: i) disentangling the image into high- and low-frequency parts and
feature learning; ii) frequency-domain fusion to complete the task. The
approach can be used with any backbone segmentation network. We apply the
approach to the segmentation of the red and dentate nuclei from QSM data which
is particularly relevant for the study of parkinsonian syndromes. We
demonstrate that the proposed method provides considerable performance
improvements for these tasks. We further applied it to three public datasets
from the Medical Segmentation Decathlon (MSD) challenge. For two MSD tasks, it
provided smaller but still substantial improvements (up to 7 points of Dice),
especially under small training set situations.
Related papers
- SpaRG: Sparsely Reconstructed Graphs for Generalizable fMRI Analysis [8.489318619991534]
Deep learning can help uncover patterns in resting-state functional Magnetic Resonance Imaging (rsfMRI) associated with psychiatric disorders and personal traits.
Yet the problem of interpreting deep learning findings is rarely more evident than in fMRI analyses.
We propose a simple approach to mitigate these challenges grounded on sparsification and self-supervision.
arXiv Detail & Related papers (2024-09-24T18:35:57Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
We present AdaSyn, a framework for domain adaptive synapse detection with weak point annotations.
In the WASPSYN challenge at I SBI 2023, our method ranks the 1st place.
arXiv Detail & Related papers (2023-08-31T05:05:53Z) - ScoreMix: A Scalable Augmentation Strategy for Training GANs with
Limited Data [93.06336507035486]
Generative Adversarial Networks (GANs) typically suffer from overfitting when limited training data is available.
We present ScoreMix, a novel and scalable data augmentation approach for various image synthesis tasks.
arXiv Detail & Related papers (2022-10-27T02:55:15Z) - Semantics-Depth-Symbiosis: Deeply Coupled Semi-Supervised Learning of
Semantics and Depth [83.94528876742096]
We tackle the MTL problem of two dense tasks, ie, semantic segmentation and depth estimation, and present a novel attention module called Cross-Channel Attention Module (CCAM)
In a true symbiotic spirit, we then formulate a novel data augmentation for the semantic segmentation task using predicted depth called AffineMix, and a simple depth augmentation using predicted semantics called ColorAug.
Finally, we validate the performance gain of the proposed method on the Cityscapes dataset, which helps us achieve state-of-the-art results for a semi-supervised joint model based on depth and semantic
arXiv Detail & Related papers (2022-06-21T17:40:55Z) - Longitudinal detection of new MS lesions using Deep Learning [0.0]
We describe a deep-learning-based pipeline addressing the task of detecting and segmenting new MS lesions.
First, we propose to use transfer-learning from a model trained on a segmentation task using single time-points.
Second, we propose a data synthesis strategy to generate realistic longitudinal time-points with new lesions.
arXiv Detail & Related papers (2022-06-16T16:09:04Z) - Recurrent Mask Refinement for Few-Shot Medical Image Segmentation [15.775057485500348]
We propose a new framework for few-shot medical image segmentation based on prototypical networks.
Our innovation lies in the design of two key modules: 1) a context relation encoder (CRE) that uses correlation to capture local relation features between foreground and background regions.
Experiments on two abdomen CT datasets and an abdomen MRI dataset show the proposed method obtains substantial improvement over the state-of-the-art methods.
arXiv Detail & Related papers (2021-08-02T04:06:12Z) - Generalizing Face Forgery Detection with High-frequency Features [63.33397573649408]
Current CNN-based detectors tend to overfit to method-specific color textures and thus fail to generalize.
We propose to utilize the high-frequency noises for face forgery detection.
The first is the multi-scale high-frequency feature extraction module that extracts high-frequency noises at multiple scales.
The second is the residual-guided spatial attention module that guides the low-level RGB feature extractor to concentrate more on forgery traces from a new perspective.
arXiv Detail & Related papers (2021-03-23T08:19:21Z) - Learning Multi-Modal Volumetric Prostate Registration with Weak
Inter-Subject Spatial Correspondence [2.6894568533991543]
We introduce an auxiliary input to the neural network for the prior information about the prostate location in the MR sequence.
With weakly labelled MR-TRUS prostate data, we showed registration quality comparable to the state-of-the-art deep learning-based method.
arXiv Detail & Related papers (2021-02-09T16:48:59Z) - Prior Guided Feature Enrichment Network for Few-Shot Segmentation [64.91560451900125]
State-of-the-art semantic segmentation methods require sufficient labeled data to achieve good results.
Few-shot segmentation is proposed to tackle this problem by learning a model that quickly adapts to new classes with a few labeled support samples.
Theses frameworks still face the challenge of generalization ability reduction on unseen classes due to inappropriate use of high-level semantic information.
arXiv Detail & Related papers (2020-08-04T10:41:32Z) - Weakly Supervised Deep Nuclei Segmentation Using Partial Points
Annotation in Histopathology Images [51.893494939675314]
We propose a novel weakly supervised segmentation framework based on partial points annotation.
We show that our method can achieve competitive performance compared to the fully supervised counterpart and the state-of-the-art methods.
arXiv Detail & Related papers (2020-07-10T15:41:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.