Reconstruction of Particle Flow Energy Distribution Using Deep Learning Algorithms
- URL: http://arxiv.org/abs/2410.07250v1
- Date: Tue, 8 Oct 2024 11:49:18 GMT
- Title: Reconstruction of Particle Flow Energy Distribution Using Deep Learning Algorithms
- Authors: Han Zhang, Shengxiang Lin, Xingyi Zhang, Yu Wang, Yangguang Zhang,
- Abstract summary: Recent advancements involve using deep learning to process calorimeter images from various sub-detectors for energy map reconstruction.
This paper compares classical algorithms-MLP, CNN, U-Net, and RNN-with variants that include self-attention and 3D convolution modules.
Test dataset of jet events is utilized to analyze and compare models' performance in handling anomalous high-energy events.
- Score: 8.5980103509356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In high-energy particle physics, extracting information from complex detector signals is crucial for energy reconstruction. Recent advancements involve using deep learning to process calorimeter images from various sub-detectors in experiments like the Large Hadron Collider (LHC) for energy map reconstruction. This paper compares classical algorithms\-MLP, CNN, U-Net, and RNN\-with variants that include self-attention and 3D convolution modules to evaluate their effectiveness in reconstructing the initial energy distribution. Additionally, a test dataset of jet events is utilized to analyze and compare models' performance in handling anomalous high-energy events. The analysis highlights the effectiveness of deep learning techniques for energy image reconstruction and explores their potential in this area.
Related papers
- End-To-End Latent Variational Diffusion Models for Inverse Problems in
High Energy Physics [61.44793171735013]
We introduce a novel unified architecture, termed latent variation models, which combines the latent learning of cutting-edge generative art approaches with an end-to-end variational framework.
Our unified approach achieves a distribution-free distance to the truth of over 20 times less than non-latent state-of-the-art baseline.
arXiv Detail & Related papers (2023-05-17T17:43:10Z) - Pixelated Reconstruction of Foreground Density and Background Surface
Brightness in Gravitational Lensing Systems using Recurrent Inference
Machines [116.33694183176617]
We use a neural network based on the Recurrent Inference Machine to reconstruct an undistorted image of the background source and the lens mass density distribution as pixelated maps.
When compared to more traditional parametric models, the proposed method is significantly more expressive and can reconstruct complex mass distributions.
arXiv Detail & Related papers (2023-01-10T19:00:12Z) - Energy reconstruction for large liquid scintillator detectors with
machine learning techniques: aggregated features approach [0.6015898117103069]
We present machine learning methods for energy reconstruction in JUNO, the most advanced detector of its type.
We focus on positron events in the energy range of 0-10 MeV which corresponds to the main signal in JUNO $-$ neutrinos originated from nuclear reactor cores.
We consider Boosted Decision Trees and Fully Connected Deep Neural Network trained on aggregated features, calculated using information collected by PMTs.
arXiv Detail & Related papers (2022-06-17T22:50:50Z) - Deep learning techniques for energy clustering in the CMS ECAL [0.0]
Reconstruction of electrons and photons in CMS depends on topological clustering of the energy deposited by an incident particle.
New methods are being investigated that exploit state-of-the-art deep learning architectures like Graph Neural Networks (GNN) and self-attention algorithms.
arXiv Detail & Related papers (2022-04-21T17:23:43Z) - End-to-end multi-particle reconstruction in high occupancy imaging
calorimeters with graph neural networks [18.347013421412793]
We present an end-to-end reconstruction algorithm to build particle candidates from detector hits in granular calorimeters.
The algorithm exploits a distance-weighted graph neural network, trained with object condensation, a graph segmentation technique.
This work is the first-ever example of single-shot calorimetric reconstruction of $cal O(1000)$ particles in high-luminosity conditions with 200 pileup to our knowledge.
arXiv Detail & Related papers (2022-04-04T17:51:43Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
We develop a multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies.
We propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features.
arXiv Detail & Related papers (2022-03-10T14:22:54Z) - The Preliminary Results on Analysis of TAIGA-IACT Images Using
Convolutional Neural Networks [68.8204255655161]
The aim of the work is to study the possibility of the machine learning application to solve the tasks set for TAIGA-IACT.
The method of Convolutional Neural Networks (CNN) was applied to process and analyze Monte-Carlo events simulated with CORSIKA.
arXiv Detail & Related papers (2021-12-19T15:17:20Z) - Energy Drain of the Object Detection Processing Pipeline for Mobile
Devices: Analysis and Implications [77.00418462388525]
This paper presents the first detailed experimental study of a mobile augmented reality (AR) client's energy consumption and the detection latency of executing Convolutional Neural Networks (CNN) based object detection.
Our detailed measurements refine the energy analysis of mobile AR clients and reveal several interesting perspectives regarding the energy consumption of executing CNN-based object detection.
arXiv Detail & Related papers (2020-11-26T00:32:07Z) - Shared Prior Learning of Energy-Based Models for Image Reconstruction [69.72364451042922]
We propose a novel learning-based framework for image reconstruction particularly designed for training without ground truth data.
In the absence of ground truth data, we change the loss functional to a patch-based Wasserstein functional.
In shared prior learning, both aforementioned optimal control problems are optimized simultaneously with shared learned parameters of the regularizer.
arXiv Detail & Related papers (2020-11-12T17:56:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.