Reconstruction of Particle Flow Energy Distribution Using Deep Learning Algorithms
- URL: http://arxiv.org/abs/2410.07250v1
- Date: Tue, 8 Oct 2024 11:49:18 GMT
- Title: Reconstruction of Particle Flow Energy Distribution Using Deep Learning Algorithms
- Authors: Han Zhang, Shengxiang Lin, Xingyi Zhang, Yu Wang, Yangguang Zhang,
- Abstract summary: Recent advancements involve using deep learning to process calorimeter images from various sub-detectors for energy map reconstruction.
This paper compares classical algorithms-MLP, CNN, U-Net, and RNN-with variants that include self-attention and 3D convolution modules.
Test dataset of jet events is utilized to analyze and compare models' performance in handling anomalous high-energy events.
- Score: 8.5980103509356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In high-energy particle physics, extracting information from complex detector signals is crucial for energy reconstruction. Recent advancements involve using deep learning to process calorimeter images from various sub-detectors in experiments like the Large Hadron Collider (LHC) for energy map reconstruction. This paper compares classical algorithms\-MLP, CNN, U-Net, and RNN\-with variants that include self-attention and 3D convolution modules to evaluate their effectiveness in reconstructing the initial energy distribution. Additionally, a test dataset of jet events is utilized to analyze and compare models' performance in handling anomalous high-energy events. The analysis highlights the effectiveness of deep learning techniques for energy image reconstruction and explores their potential in this area.
Related papers
- Metropolis-Hastings Sampling for 3D Gaussian Reconstruction [24.110069582862465]
We propose an adaptive sampling framework for 3D Gaussian Splatting (3DGS)<n>Our framework overcomes limitations by reformulating densification and pruning as a probabilistic sampling process.<n>Our approach enhances computational efficiency while matching or modestly surpassing the view-synthesis quality of state-of-the-art models.
arXiv Detail & Related papers (2025-06-15T19:12:37Z) - HDiffTG: A Lightweight Hybrid Diffusion-Transformer-GCN Architecture for 3D Human Pose Estimation [21.823965837699166]
HDiffTG is a novel 3D Human Pose (3DHCN) method that integrates Transformer, Graph Convolutional Network (GCN), and diffusion model into a unified framework.<n>We show that HDiffTG significantly improves pose estimation accuracy and robustness while maintaining a lightweight design.
arXiv Detail & Related papers (2025-05-07T09:26:37Z) - Controlled Latent Diffusion Models for 3D Porous Media Reconstruction [11.29275004613083]
Three-dimensional digital reconstruction of porous media presents a fundamental challenge in geoscience.<n>We introduce a computational framework that addresses this challenge through latent diffusion models operating within the EDM framework.
arXiv Detail & Related papers (2025-03-31T13:36:55Z) - A Neural Network Architecture Based on Attention Gate Mechanism for 3D Magnetotelluric Forward Modeling [1.5862483908050367]
We propose a novel neural network architecture named MTAGU-Net, which integrates an attention gating mechanism for 3D MT forward modeling.<n>A dual-path attention gating module is designed based on forward response data images and embedded in the skip connections between the encoder and decoder.<n>A synthetic model generation method utilizing 3D Gaussian random field (GRF) accurately replicates the electrical structures of real-world geological scenarios.
arXiv Detail & Related papers (2025-03-14T13:48:25Z) - Divide-and-Conquer: Confluent Triple-Flow Network for RGB-T Salient Object Detection [70.84835546732738]
RGB-Thermal Salient Object Detection aims to pinpoint prominent objects within aligned pairs of visible and thermal infrared images.<n>Traditional encoder-decoder architectures may not have adequately considered the robustness against noise originating from defective modalities.<n>We propose the ConTriNet, a robust Confluent Triple-Flow Network employing a Divide-and-Conquer strategy.
arXiv Detail & Related papers (2024-12-02T14:44:39Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - X Modality Assisting RGBT Object Tracking [1.730147049648545]
A novel X Modality Assisting Network (X-Net) is introduced, which explores the impact of the fusion paradigm by decoupling visual object tracking into three distinct levels.<n>X-Net achieves performance gains of 0.47%/1.2% in the average of precise rate and success rate.
arXiv Detail & Related papers (2023-12-27T05:38:54Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - End-To-End Latent Variational Diffusion Models for Inverse Problems in
High Energy Physics [61.44793171735013]
We introduce a novel unified architecture, termed latent variation models, which combines the latent learning of cutting-edge generative art approaches with an end-to-end variational framework.
Our unified approach achieves a distribution-free distance to the truth of over 20 times less than non-latent state-of-the-art baseline.
arXiv Detail & Related papers (2023-05-17T17:43:10Z) - Pixelated Reconstruction of Foreground Density and Background Surface
Brightness in Gravitational Lensing Systems using Recurrent Inference
Machines [116.33694183176617]
We use a neural network based on the Recurrent Inference Machine to reconstruct an undistorted image of the background source and the lens mass density distribution as pixelated maps.
When compared to more traditional parametric models, the proposed method is significantly more expressive and can reconstruct complex mass distributions.
arXiv Detail & Related papers (2023-01-10T19:00:12Z) - Energy reconstruction for large liquid scintillator detectors with
machine learning techniques: aggregated features approach [0.6015898117103069]
We present machine learning methods for energy reconstruction in JUNO, the most advanced detector of its type.
We focus on positron events in the energy range of 0-10 MeV which corresponds to the main signal in JUNO $-$ neutrinos originated from nuclear reactor cores.
We consider Boosted Decision Trees and Fully Connected Deep Neural Network trained on aggregated features, calculated using information collected by PMTs.
arXiv Detail & Related papers (2022-06-17T22:50:50Z) - Deep learning techniques for energy clustering in the CMS ECAL [0.0]
Reconstruction of electrons and photons in CMS depends on topological clustering of the energy deposited by an incident particle.
New methods are being investigated that exploit state-of-the-art deep learning architectures like Graph Neural Networks (GNN) and self-attention algorithms.
arXiv Detail & Related papers (2022-04-21T17:23:43Z) - End-to-end multi-particle reconstruction in high occupancy imaging
calorimeters with graph neural networks [18.347013421412793]
We present an end-to-end reconstruction algorithm to build particle candidates from detector hits in granular calorimeters.
The algorithm exploits a distance-weighted graph neural network, trained with object condensation, a graph segmentation technique.
This work is the first-ever example of single-shot calorimetric reconstruction of $cal O(1000)$ particles in high-luminosity conditions with 200 pileup to our knowledge.
arXiv Detail & Related papers (2022-04-04T17:51:43Z) - DepthFormer: Exploiting Long-Range Correlation and Local Information for
Accurate Monocular Depth Estimation [50.08080424613603]
Long-range correlation is essential for accurate monocular depth estimation.
We propose to leverage the Transformer to model this global context with an effective attention mechanism.
Our proposed model, termed DepthFormer, surpasses state-of-the-art monocular depth estimation methods with prominent margins.
arXiv Detail & Related papers (2022-03-27T05:03:56Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
We develop a multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies.
We propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features.
arXiv Detail & Related papers (2022-03-10T14:22:54Z) - The Preliminary Results on Analysis of TAIGA-IACT Images Using
Convolutional Neural Networks [68.8204255655161]
The aim of the work is to study the possibility of the machine learning application to solve the tasks set for TAIGA-IACT.
The method of Convolutional Neural Networks (CNN) was applied to process and analyze Monte-Carlo events simulated with CORSIKA.
arXiv Detail & Related papers (2021-12-19T15:17:20Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
Deep Neural Network (DNN) models are essential for practical applications, especially for resource limited devices.
Previous unstructured or structured weight pruning methods can hardly truly accelerate inference.
We propose a generalized weight unification framework at a hardware compatible micro-structured level to achieve high amount of compression and acceleration.
arXiv Detail & Related papers (2021-06-15T17:22:59Z) - Quaternion Factorization Machines: A Lightweight Solution to Intricate
Feature Interaction Modelling [76.89779231460193]
factorization machine (FM) is capable of automatically learning high-order interactions among features to make predictions without the need for manual feature engineering.
We propose the quaternion factorization machine (QFM) and quaternion neural factorization machine (QNFM) for sparse predictive analytics.
arXiv Detail & Related papers (2021-04-05T00:02:36Z) - Energy Drain of the Object Detection Processing Pipeline for Mobile
Devices: Analysis and Implications [77.00418462388525]
This paper presents the first detailed experimental study of a mobile augmented reality (AR) client's energy consumption and the detection latency of executing Convolutional Neural Networks (CNN) based object detection.
Our detailed measurements refine the energy analysis of mobile AR clients and reveal several interesting perspectives regarding the energy consumption of executing CNN-based object detection.
arXiv Detail & Related papers (2020-11-26T00:32:07Z) - Shared Prior Learning of Energy-Based Models for Image Reconstruction [69.72364451042922]
We propose a novel learning-based framework for image reconstruction particularly designed for training without ground truth data.
In the absence of ground truth data, we change the loss functional to a patch-based Wasserstein functional.
In shared prior learning, both aforementioned optimal control problems are optimized simultaneously with shared learned parameters of the regularizer.
arXiv Detail & Related papers (2020-11-12T17:56:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.