Controlled Latent Diffusion Models for 3D Porous Media Reconstruction
- URL: http://arxiv.org/abs/2503.24083v2
- Date: Mon, 07 Apr 2025 14:41:54 GMT
- Title: Controlled Latent Diffusion Models for 3D Porous Media Reconstruction
- Authors: Danilo Naiff, Bernardo P. Schaeffer, Gustavo Pires, Dragan Stojkovic, Thomas Rapstine, Fabio Ramos,
- Abstract summary: Three-dimensional digital reconstruction of porous media presents a fundamental challenge in geoscience.<n>We introduce a computational framework that addresses this challenge through latent diffusion models operating within the EDM framework.
- Score: 11.29275004613083
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Three-dimensional digital reconstruction of porous media presents a fundamental challenge in geoscience, requiring simultaneous resolution of fine-scale pore structures while capturing representative elementary volumes. We introduce a computational framework that addresses this challenge through latent diffusion models operating within the EDM framework. Our approach reduces dimensionality via a custom variational autoencoder trained in binary geological volumes, improving efficiency and also enabling the generation of larger volumes than previously possible with diffusion models. A key innovation is our controlled unconditional sampling methodology, which enhances distribution coverage by first sampling target statistics from their empirical distributions, then generating samples conditioned on these values. Extensive testing on four distinct rock types demonstrates that conditioning on porosity - a readily computable statistic - is sufficient to ensure a consistent representation of multiple complex properties, including permeability, two-point correlation functions, and pore size distributions. The framework achieves better generation quality than pixel-space diffusion while enabling significantly larger volume reconstruction (256-cube voxels) with substantially reduced computational requirements, establishing a new state-of-the-art for digital rock physics applications.
Related papers
- Nonparametric estimation of a factorizable density using diffusion models [3.5773675235837974]
In this paper, we study diffusion models as an implicit approach to nonparametric density estimation.<n>We show that an implicit density estimator constructed from diffusion models adapts to the factorization structure and achieves the minimax optimal rate.<n>In constructing the estimator, we design a sparse weight-sharing neural network architecture.
arXiv Detail & Related papers (2025-01-03T12:32:19Z) - Constrained Transformer-Based Porous Media Generation to Spatial Distribution of Rock Properties [0.0]
Pore-scale modeling of rock images based on information in 3D micro-computed tomography data is crucial for studying complex subsurface processes.
We propose a two-stage modeling framework that combines a Vector Quantized Variational Autoencoder (VQVAE) and a transformer model for spatial upscaling and arbitrary-size 3D porous media reconstruction.
arXiv Detail & Related papers (2024-10-28T19:03:33Z) - Constrained Diffusion Models via Dual Training [80.03953599062365]
Diffusion processes are prone to generating samples that reflect biases in a training dataset.
We develop constrained diffusion models by imposing diffusion constraints based on desired distributions.
We show that our constrained diffusion models generate new data from a mixture data distribution that achieves the optimal trade-off among objective and constraints.
arXiv Detail & Related papers (2024-08-27T14:25:42Z) - Controlling the Fidelity and Diversity of Deep Generative Models via Pseudo Density [70.14884528360199]
We introduce an approach to bias deep generative models, such as GANs and diffusion models, towards generating data with enhanced fidelity or increased diversity.
Our approach involves manipulating the distribution of training and generated data through a novel metric for individual samples, named pseudo density.
arXiv Detail & Related papers (2024-07-11T16:46:04Z) - Provable Statistical Rates for Consistency Diffusion Models [87.28777947976573]
Despite the state-of-the-art performance, diffusion models are known for their slow sample generation due to the extensive number of steps involved.
This paper contributes towards the first statistical theory for consistency models, formulating their training as a distribution discrepancy minimization problem.
arXiv Detail & Related papers (2024-06-23T20:34:18Z) - Complexity Matters: Rethinking the Latent Space for Generative Modeling [65.64763873078114]
In generative modeling, numerous successful approaches leverage a low-dimensional latent space, e.g., Stable Diffusion.
In this study, we aim to shed light on this under-explored topic by rethinking the latent space from the perspective of model complexity.
arXiv Detail & Related papers (2023-07-17T07:12:29Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - SinDiffusion: Learning a Diffusion Model from a Single Natural Image [159.4285444680301]
We present SinDiffusion, leveraging denoising diffusion models to capture internal distribution of patches from a single natural image.
It is based on two core designs. First, SinDiffusion is trained with a single model at a single scale instead of multiple models with progressive growing of scales.
Second, we identify that a patch-level receptive field of the diffusion network is crucial and effective for capturing the image's patch statistics.
arXiv Detail & Related papers (2022-11-22T18:00:03Z) - A DeepParticle method for learning and generating aggregation patterns
in multi-dimensional Keller-Segel chemotaxis systems [3.6184545598911724]
We study a regularized interacting particle method for computing aggregation patterns and near singular solutions of a Keller-Segal (KS) chemotaxis system in two and three space dimensions.
We further develop DeepParticle (DP) method to learn and generate solutions under variations of physical parameters.
arXiv Detail & Related papers (2022-08-31T20:52:01Z) - Deep learning of multi-resolution X-Ray micro-CT images for multi-scale
modelling [0.0]
We develop a 3D Enhanced Deep Super Resolution (EDSR) convolutional neural network to create enhanced, high-resolution data over large spatial scales.
We validate the network with various metrics: textual analysis, segmentation behaviour and pore-network model (PNM) multiphase flow simulations.
The EDSR generated model is more accurate than the base LR model at predicting experimental behaviour in the presence of heterogeneities.
arXiv Detail & Related papers (2021-11-01T21:49:22Z) - Deep-learning-based coupled flow-geomechanics surrogate model for CO$_2$
sequestration [4.635171370680939]
The 3D recurrent R-U-Net model combines deep convolutional and recurrent neural networks to capture the spatial distribution and temporal evolution of saturation, pressure and surface displacement fields.
The surrogate model is trained to predict the 3D CO2 saturation and pressure fields in the storage aquifer, and 2D displacement maps at the Earth's surface.
arXiv Detail & Related papers (2021-05-04T07:34:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.