論文の概要: Deep Learning for Surgical Instrument Recognition and Segmentation in Robotic-Assisted Surgeries: A Systematic Review
- arxiv url: http://arxiv.org/abs/2410.07269v2
- Date: Thu, 07 Nov 2024 07:52:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-09 00:48:57.887233
- Title: Deep Learning for Surgical Instrument Recognition and Segmentation in Robotic-Assisted Surgeries: A Systematic Review
- Title(参考訳): ロボット支援外科医の手術機器認識とセグメント化のための深層学習 : システムレビュー
- Authors: Fatimaelzahraa Ali Ahmed, Mahmoud Yousef, Mariam Ali Ahmed, Hasan Omar Ali, Anns Mahboob, Hazrat Ali, Zubair Shah, Omar Aboumarzouk, Abdulla Al Ansari, Shidin Balakrishnan,
- Abstract要約: ロボットによる最小侵襲手術における手術器具のアノテートのための深層学習(DL)の適用は,手術技術の大幅な進歩を示している。
これらの高度なDLモデルは、手術器具の検出と分節の精度と効率を顕著に改善した。
外科教育におけるDLの応用は変革的である。
- 参考スコア(独自算出の注目度): 0.24342814271497581
- License:
- Abstract: Applying deep learning (DL) for annotating surgical instruments in robot-assisted minimally invasive surgeries (MIS) represents a significant advancement in surgical technology. This systematic review examines 48 studies that and advanced DL methods and architectures. These sophisticated DL models have shown notable improvements in the precision and efficiency of detecting and segmenting surgical tools. The enhanced capabilities of these models support various clinical applications, including real-time intraoperative guidance, comprehensive postoperative evaluations, and objective assessments of surgical skills. By accurately identifying and segmenting surgical instruments in video data, DL models provide detailed feedback to surgeons, thereby improving surgical outcomes and reducing complication risks. Furthermore, the application of DL in surgical education is transformative. The review underscores the significant impact of DL on improving the accuracy of skill assessments and the overall quality of surgical training programs. However, implementing DL in surgical tool detection and segmentation faces challenges, such as the need for large, accurately annotated datasets to train these models effectively. The manual annotation process is labor-intensive and time-consuming, posing a significant bottleneck. Future research should focus on automating the detection and segmentation process and enhancing the robustness of DL models against environmental variations. Expanding the application of DL models across various surgical specialties will be essential to fully realize this technology's potential. Integrating DL with other emerging technologies, such as augmented reality (AR), also offers promising opportunities to further enhance the precision and efficacy of surgical procedures.
- Abstract(参考訳): ロボットによる最小侵襲手術(MIS)における手術器具の注釈付けのための深層学習(DL)の適用は,手術技術の著しい進歩を示している。
本研究は,先進的なDL手法とアーキテクチャに関する48の研究を体系的に検討する。
これらの高度なDLモデルは、手術器具の検出と分節の精度と効率を顕著に改善した。
これらのモデルの強化は、リアルタイムの術中指導、総合的な術後評価、手術スキルの客観的評価など、様々な臨床応用をサポートする。
手術器具をビデオデータで正確に識別してセグメント化することにより、DLモデルは外科医に詳細なフィードバックを与え、手術結果の改善と合併症のリスクの低減を図っている。
さらに, 手術教育におけるDLの応用は変革的である。
本総説では,DLが技量評価の精度向上と外科訓練プログラムの総合的品質向上に有意な影響を指摘した。
しかし、手術ツールの検出とセグメント化にDLを実装することは、これらのモデルを効果的にトレーニングするために、大規模で正確に注釈付けされたデータセットを必要とするなど、課題に直面している。
手動のアノテーションプロセスは、労働集約的で時間がかかり、重大なボトルネックを生じさせる。
今後の研究は, 検出・分節プロセスの自動化と, 環境変動に対するDLモデルの堅牢性向上に重点を置くべきである。
各種外科専門分野におけるDLモデルの適用拡大は,この技術の潜在能力を十分に実現するために不可欠である。
拡張現実(AR)などの他の新興技術とDLを統合することで、外科手術の精度と効果をさらに向上する有望な機会を提供する。
関連論文リスト
- Automated Surgical Skill Assessment in Endoscopic Pituitary Surgery using Real-time Instrument Tracking on a High-fidelity Bench-top Phantom [9.41936397281689]
外科的スキルの改善は一般的に患者の成績の改善に関連しているが、評価は主観的であり、労働集約的である。
内視鏡下垂体手術の鼻相を模範として,シミュレートされた手術に焦点を当てた新しい公開データセットが導入された。
多層パーセプトロンは87%の精度で手術技量(初心者または専門家)を予測し、「可視時間測定のための全手術時間の割合」は高度な手術技量と相関した。
論文 参考訳(メタデータ) (2024-09-25T15:27:44Z) - Realistic Data Generation for 6D Pose Estimation of Surgical Instruments [4.226502078427161]
手術器具の6次元ポーズ推定は,手術操作の自動実行を可能にするために重要である。
家庭や工業環境では、3Dコンピュータグラフィックスソフトウェアで生成された合成データが、アノテーションコストを最小限に抑える代替手段として示されている。
本稿では,大規模・多様なデータセットの自動生成を可能にする外科ロボティクスのシミュレーション環境の改善を提案する。
論文 参考訳(メタデータ) (2024-06-11T14:59:29Z) - Creating a Digital Twin of Spinal Surgery: A Proof of Concept [68.37190859183663]
手術デジタル化は、現実世界の手術の仮想レプリカを作成するプロセスである。
脊椎外科手術に応用した手術デジタル化のための概念実証(PoC)を提案する。
5台のRGB-Dカメラを外科医の動的3D再構成に、ハイエンドカメラを解剖学の3D再構成に、赤外線ステレオカメラを手術器具追跡に、レーザースキャナーを手術室の3D再構成とデータ融合に使用した。
論文 参考訳(メタデータ) (2024-03-25T13:09:40Z) - Surgical tool classification and localization: results and methods from
the MICCAI 2022 SurgToolLoc challenge [69.91670788430162]
SurgLoc 2022 チャレンジの結果を示す。
目標は、ツール検出のためにトレーニングされた機械学習モデルにおいて、ツールの存在データを弱いラベルとして活用することだった。
これらの結果を機械学習と手術データ科学の幅広い文脈で論じることで結論付ける。
論文 参考訳(メタデータ) (2023-05-11T21:44:39Z) - Demonstration-Guided Reinforcement Learning with Efficient Exploration
for Task Automation of Surgical Robot [54.80144694888735]
効率的な強化学習アルゴリズムであるDEX(Demonstration-Guided Exploration)を導入する。
本手法は,生産的相互作用を促進するために,高い値で専門家のような行動を推定する。
総合的な手術シミュレーションプラットフォームであるSurRoLによる10ドルの手術操作に関する実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-02-20T05:38:54Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
網膜下注射のための自律型ロボットナビゲーションの枠組みを提案する。
提案手法は,機器のポーズ推定方法,ロボットとi OCTシステム間のオンライン登録,およびインジェクションターゲットへのナビゲーションに適した軌道計画から構成される。
ブタ前眼の精度と再現性について実験を行った。
論文 参考訳(メタデータ) (2023-01-17T21:41:21Z) - Dissecting Self-Supervised Learning Methods for Surgical Computer Vision [51.370873913181605]
一般のコンピュータビジョンコミュニティでは,自己監視学習(SSL)手法が普及し始めている。
医学や手術など、より複雑で影響力のある領域におけるSSLメソッドの有効性は、限定的かつ未調査のままである。
外科的文脈理解,位相認識,ツール存在検出の2つの基本的なタスクに対して,これらの手法の性能をColec80データセット上で広範囲に解析する。
論文 参考訳(メタデータ) (2022-07-01T14:17:11Z) - CholecTriplet2021: A benchmark challenge for surgical action triplet
recognition [66.51610049869393]
腹腔鏡下手術における三肢の認識のためにMICCAI 2021で実施した内視鏡的視力障害であるColecTriplet 2021を提案する。
課題の参加者が提案する最先端の深層学習手法の課題設定と評価について述べる。
4つのベースライン法と19の新しいディープラーニングアルゴリズムが提示され、手術ビデオから直接手術行動三重項を認識し、平均平均精度(mAP)は4.2%から38.1%である。
論文 参考訳(メタデータ) (2022-04-10T18:51:55Z) - Video-based Formative and Summative Assessment of Surgical Tasks using
Deep Learning [0.8612287536028312]
本稿では,外科的スキル実行の高精度な評価を自動的かつ客観的に行うことができる深層学習(DL)モデルを提案する。
整形性評価は外科的パフォーマンスと相関する視覚特徴のヒートマップを用いて生成される。
論文 参考訳(メタデータ) (2022-03-17T20:07:48Z) - Real-time Informative Surgical Skill Assessment with Gaussian Process
Learning [12.019641896240245]
本研究は,ESSBSのためのガウス的プロセス学習に基づく自動的客観的外科的スキル評価手法を提案する。
提案手法は,計測器の動きを内視鏡座標に投影し,データ次元を減少させる。
実験結果から,完全外科手術における100%の予測精度と,リアルタイムの予測評価における90%の精度が得られた。
論文 参考訳(メタデータ) (2021-12-05T15:35:40Z) - Exploring Deep Learning Methods for Real-Time Surgical Instrument
Segmentation in Laparoscopy [0.4155459804992016]
腹腔鏡下手術器具の自動分節法について, 一般的な深層学習法について検討し, 比較を行った。
実験の結果,Dual Decoder attention network (DDNet) は近年の深層学習に比べて優れた結果が得られた。
論文 参考訳(メタデータ) (2021-07-05T23:32:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。