Deep Learning for Surgical Instrument Recognition and Segmentation in Robotic-Assisted Surgeries: A Systematic Review
- URL: http://arxiv.org/abs/2410.07269v2
- Date: Thu, 07 Nov 2024 07:52:59 GMT
- Title: Deep Learning for Surgical Instrument Recognition and Segmentation in Robotic-Assisted Surgeries: A Systematic Review
- Authors: Fatimaelzahraa Ali Ahmed, Mahmoud Yousef, Mariam Ali Ahmed, Hasan Omar Ali, Anns Mahboob, Hazrat Ali, Zubair Shah, Omar Aboumarzouk, Abdulla Al Ansari, Shidin Balakrishnan,
- Abstract summary: Applying deep learning (DL) for annotating surgical instruments in robot-assisted minimally invasive surgeries represents a significant advancement in surgical technology.
These sophisticated DL models have shown notable improvements in the precision and efficiency of detecting and segmenting surgical tools.
The application of DL in surgical education is transformative.
- Score: 0.24342814271497581
- License:
- Abstract: Applying deep learning (DL) for annotating surgical instruments in robot-assisted minimally invasive surgeries (MIS) represents a significant advancement in surgical technology. This systematic review examines 48 studies that and advanced DL methods and architectures. These sophisticated DL models have shown notable improvements in the precision and efficiency of detecting and segmenting surgical tools. The enhanced capabilities of these models support various clinical applications, including real-time intraoperative guidance, comprehensive postoperative evaluations, and objective assessments of surgical skills. By accurately identifying and segmenting surgical instruments in video data, DL models provide detailed feedback to surgeons, thereby improving surgical outcomes and reducing complication risks. Furthermore, the application of DL in surgical education is transformative. The review underscores the significant impact of DL on improving the accuracy of skill assessments and the overall quality of surgical training programs. However, implementing DL in surgical tool detection and segmentation faces challenges, such as the need for large, accurately annotated datasets to train these models effectively. The manual annotation process is labor-intensive and time-consuming, posing a significant bottleneck. Future research should focus on automating the detection and segmentation process and enhancing the robustness of DL models against environmental variations. Expanding the application of DL models across various surgical specialties will be essential to fully realize this technology's potential. Integrating DL with other emerging technologies, such as augmented reality (AR), also offers promising opportunities to further enhance the precision and efficacy of surgical procedures.
Related papers
- Automated Surgical Skill Assessment in Endoscopic Pituitary Surgery using Real-time Instrument Tracking on a High-fidelity Bench-top Phantom [9.41936397281689]
Improved surgical skill is generally associated with improved patient outcomes, but assessment is subjective and labour-intensive.
A new public dataset is introduced, focusing on simulated surgery, using the nasal phase of endoscopic pituitary surgery as an exemplar.
A Multilayer Perceptron achieved 87% accuracy in predicting surgical skill level (novice or expert), with the "ratio of total procedure time to instrument visible time" correlated with higher surgical skill.
arXiv Detail & Related papers (2024-09-25T15:27:44Z) - Realistic Data Generation for 6D Pose Estimation of Surgical Instruments [4.226502078427161]
6D pose estimation of surgical instruments is critical to enable the automatic execution of surgical maneuvers.
In household and industrial settings, synthetic data, generated with 3D computer graphics software, has been shown as an alternative to minimize annotation costs.
We propose an improved simulation environment for surgical robotics that enables the automatic generation of large and diverse datasets.
arXiv Detail & Related papers (2024-06-11T14:59:29Z) - Creating a Digital Twin of Spinal Surgery: A Proof of Concept [68.37190859183663]
Surgery digitalization is the process of creating a virtual replica of real-world surgery.
We present a proof of concept (PoC) for surgery digitalization that is applied to an ex-vivo spinal surgery.
We employ five RGB-D cameras for dynamic 3D reconstruction of the surgeon, a high-end camera for 3D reconstruction of the anatomy, an infrared stereo camera for surgical instrument tracking, and a laser scanner for 3D reconstruction of the operating room and data fusion.
arXiv Detail & Related papers (2024-03-25T13:09:40Z) - Surgical tool classification and localization: results and methods from
the MICCAI 2022 SurgToolLoc challenge [69.91670788430162]
We present the results of the SurgLoc 2022 challenge.
The goal was to leverage tool presence data as weak labels for machine learning models trained to detect tools.
We conclude by discussing these results in the broader context of machine learning and surgical data science.
arXiv Detail & Related papers (2023-05-11T21:44:39Z) - Demonstration-Guided Reinforcement Learning with Efficient Exploration
for Task Automation of Surgical Robot [54.80144694888735]
We introduce Demonstration-guided EXploration (DEX), an efficient reinforcement learning algorithm.
Our method estimates expert-like behaviors with higher values to facilitate productive interactions.
Experiments on $10$ surgical manipulation tasks from SurRoL, a comprehensive surgical simulation platform, demonstrate significant improvements.
arXiv Detail & Related papers (2023-02-20T05:38:54Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
We propose a framework for autonomous robotic navigation for subretinal injection.
Our method consists of an instrument pose estimation method, an online registration between the robotic and the i OCT system, and trajectory planning tailored for navigation to an injection target.
Our experiments on ex-vivo porcine eyes demonstrate the precision and repeatability of the method.
arXiv Detail & Related papers (2023-01-17T21:41:21Z) - Dissecting Self-Supervised Learning Methods for Surgical Computer Vision [51.370873913181605]
Self-Supervised Learning (SSL) methods have begun to gain traction in the general computer vision community.
The effectiveness of SSL methods in more complex and impactful domains, such as medicine and surgery, remains limited and unexplored.
We present an extensive analysis of the performance of these methods on the Cholec80 dataset for two fundamental and popular tasks in surgical context understanding, phase recognition and tool presence detection.
arXiv Detail & Related papers (2022-07-01T14:17:11Z) - CholecTriplet2021: A benchmark challenge for surgical action triplet
recognition [66.51610049869393]
This paper presents CholecTriplet 2021: an endoscopic vision challenge organized at MICCAI 2021 for the recognition of surgical action triplets in laparoscopic videos.
We present the challenge setup and assessment of the state-of-the-art deep learning methods proposed by the participants during the challenge.
A total of 4 baseline methods and 19 new deep learning algorithms are presented to recognize surgical action triplets directly from surgical videos, achieving mean average precision (mAP) ranging from 4.2% to 38.1%.
arXiv Detail & Related papers (2022-04-10T18:51:55Z) - Video-based Formative and Summative Assessment of Surgical Tasks using
Deep Learning [0.8612287536028312]
We propose a deep learning (DL) model that can automatically and objectively provide a high-stakes summative assessment of surgical skill execution.
Formative assessment is generated using heatmaps of visual features that correlate with surgical performance.
arXiv Detail & Related papers (2022-03-17T20:07:48Z) - Real-time Informative Surgical Skill Assessment with Gaussian Process
Learning [12.019641896240245]
This work presents a novel Gaussian Process Learning-based automatic objective surgical skill assessment method for ESSBSs.
The proposed method projects the instrument movements into the endoscope coordinate to reduce the data dimensionality.
The experimental results show that the proposed method reaches 100% prediction precision for complete surgical procedures and 90% precision for real-time prediction assessment.
arXiv Detail & Related papers (2021-12-05T15:35:40Z) - Exploring Deep Learning Methods for Real-Time Surgical Instrument
Segmentation in Laparoscopy [0.4155459804992016]
We evaluate and compare some popular deep learning methods that can be explored for the automated segmentation of surgical instruments in laparoscopy.
Our experimental results exhibit that the Dual decoder attention network (DDNet) produces a superior result compared to other recent deep learning methods.
arXiv Detail & Related papers (2021-07-05T23:32:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.