NTK-DFL: Enhancing Decentralized Federated Learning in Heterogeneous Settings via Neural Tangent Kernel
- URL: http://arxiv.org/abs/2410.01922v1
- Date: Wed, 2 Oct 2024 18:19:28 GMT
- Title: NTK-DFL: Enhancing Decentralized Federated Learning in Heterogeneous Settings via Neural Tangent Kernel
- Authors: Gabriel Thompson, Kai Yue, Chau-Wai Wong, Huaiyu Dai,
- Abstract summary: Decentralized federated learning (DFL) is a collaborative machine learning framework for training a model across participants without a central server or raw data exchange.
Recent work has shown that the neural tangent kernel (NTK) approach, when applied to federated learning in a centralized framework, can lead to improved performance.
We propose an approach leveraging the NTK to train client models in the decentralized setting, while introducing a synergy between NTK-based evolution and model averaging.
- Score: 27.92271597111756
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Decentralized federated learning (DFL) is a collaborative machine learning framework for training a model across participants without a central server or raw data exchange. DFL faces challenges due to statistical heterogeneity, as participants often possess different data distributions reflecting local environments and user behaviors. Recent work has shown that the neural tangent kernel (NTK) approach, when applied to federated learning in a centralized framework, can lead to improved performance. The NTK-based update mechanism is more expressive than typical gradient descent methods, enabling more efficient convergence and better handling of data heterogeneity. We propose an approach leveraging the NTK to train client models in the decentralized setting, while introducing a synergy between NTK-based evolution and model averaging. This synergy exploits inter-model variance and improves both accuracy and convergence in heterogeneous settings. Our model averaging technique significantly enhances performance, boosting accuracy by at least 10% compared to the mean local model accuracy. Empirical results demonstrate that our approach consistently achieves higher accuracy than baselines in highly heterogeneous settings, where other approaches often underperform. Additionally, it reaches target performance in 4.6 times fewer communication rounds. We validate our approach across multiple datasets, network topologies, and heterogeneity settings to ensure robustness and generalizability.
Related papers
- Modality Alignment Meets Federated Broadcasting [9.752555511824593]
Federated learning (FL) has emerged as a powerful approach to safeguard data privacy by training models across distributed edge devices without centralizing local data.
This paper introduces a novel FL framework leveraging modality alignment, where a text encoder resides on the server, and image encoders operate on local devices.
arXiv Detail & Related papers (2024-11-24T13:30:03Z) - Boosting the Performance of Decentralized Federated Learning via Catalyst Acceleration [66.43954501171292]
We introduce Catalyst Acceleration and propose an acceleration Decentralized Federated Learning algorithm called DFedCata.
DFedCata consists of two main components: the Moreau envelope function, which addresses parameter inconsistencies, and Nesterov's extrapolation step, which accelerates the aggregation phase.
Empirically, we demonstrate the advantages of the proposed algorithm in both convergence speed and generalization performance on CIFAR10/100 with various non-iid data distributions.
arXiv Detail & Related papers (2024-10-09T06:17:16Z) - Decentralized Sporadic Federated Learning: A Unified Algorithmic Framework with Convergence Guarantees [18.24213566328972]
Decentralized decentralized learning (DFL) captures FL settings where both (i) model updates and (ii) model aggregations are carried out by the clients without a central server.
DSpodFL consistently achieves speeds compared with baselines under various system settings.
arXiv Detail & Related papers (2024-02-05T19:02:19Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - FedAgg: Adaptive Federated Learning with Aggregated Gradients [1.5653612447564105]
We propose an adaptive FEDerated learning algorithm called FedAgg to alleviate the divergence between the local and average model parameters and obtain a fast model convergence rate.
We show that our framework is superior to existing state-of-the-art FL strategies for enhancing model performance and accelerating convergence rate under IID and Non-IID datasets.
arXiv Detail & Related papers (2023-03-28T08:07:28Z) - FedSkip: Combatting Statistical Heterogeneity with Federated Skip
Aggregation [95.85026305874824]
We introduce a data-driven approach called FedSkip to improve the client optima by periodically skipping federated averaging and scattering local models to the cross devices.
We conduct extensive experiments on a range of datasets to demonstrate that FedSkip achieves much higher accuracy, better aggregation efficiency and competing communication efficiency.
arXiv Detail & Related papers (2022-12-14T13:57:01Z) - FedDKD: Federated Learning with Decentralized Knowledge Distillation [3.9084449541022055]
We propose a novel framework of federated learning equipped with the process of decentralized knowledge distillation (FedDKD)
We show that FedDKD outperforms the state-of-the-art methods with more efficient communication and training in a few DKD steps.
arXiv Detail & Related papers (2022-05-02T07:54:07Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
We characterize the dependence of convergence on the relationship between the mixing weights of the graph and the data heterogeneity across nodes.
We propose a metric that quantifies the ability of a graph to mix the current gradients.
Motivated by our analysis, we propose an approach that periodically and efficiently optimize the metric.
arXiv Detail & Related papers (2022-04-13T15:54:35Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.