Improving the portability of predicting students performance models by using ontologies
- URL: http://arxiv.org/abs/2410.07358v1
- Date: Wed, 9 Oct 2024 18:18:54 GMT
- Title: Improving the portability of predicting students performance models by using ontologies
- Authors: Javier Lopez Zambrano, Juan A. Lara, Cristobal Romero,
- Abstract summary: One of the main current challenges in Educational Data Mining and Learning Analytics is the portability of predictive models.
We propose the utilization of an ontology that uses a taxonomy of actions that summarises students interactions with the Moodle learning management system.
Results indicate that the use of the proposed ontology improves the portability of the models in terms of predictive accuracy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the main current challenges in Educational Data Mining and Learning Analytics is the portability or transferability of predictive models obtained for a particular course so that they can be applied to other different courses. To handle this challenge, one of the foremost problems is the models excessive dependence on the low-level attributes used to train them, which reduces the models portability. To solve this issue, the use of high level attributes with more semantic meaning, such as ontologies, may be very useful. Along this line, we propose the utilization of an ontology that uses a taxonomy of actions that summarises students interactions with the Moodle learning management system. We compare the results of this proposed approach against our previous results when we used low-level raw attributes obtained directly from Moodle logs. The results indicate that the use of the proposed ontology improves the portability of the models in terms of predictive accuracy. The main contribution of this paper is to show that the ontological models obtained in one source course can be applied to other different target courses with similar usage levels without losing prediction accuracy.
Related papers
- The Importance of Model Inspection for Better Understanding Performance Characteristics of Graph Neural Networks [15.569758991934934]
We investigate the effect of modelling choices on the feature learning characteristics of graph neural networks applied to a brain shape classification task.
We find substantial differences in the feature embeddings at different layers of the models.
arXiv Detail & Related papers (2024-05-02T13:26:18Z) - Towards Learning Stochastic Population Models by Gradient Descent [0.0]
We show that simultaneous estimation of parameters and structure poses major challenges for optimization procedures.
We demonstrate accurate estimation of models but find that enforcing the inference of parsimonious, interpretable models drastically increases the difficulty.
arXiv Detail & Related papers (2024-04-10T14:38:58Z) - Masked prediction tasks: a parameter identifiability view [49.533046139235466]
We focus on the widely used self-supervised learning method of predicting masked tokens.
We show that there is a rich landscape of possibilities, out of which some prediction tasks yield identifiability, while others do not.
arXiv Detail & Related papers (2022-02-18T17:09:32Z) - End-to-End Weak Supervision [15.125993628007972]
We propose an end-to-end approach for directly learning the downstream model.
We show improved performance over prior work in terms of end model performance on downstream test sets.
arXiv Detail & Related papers (2021-07-05T19:10:11Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
We study a number of design decisions for the predictive model in visual MBRL algorithms.
We find that a range of design decisions that are often considered crucial, such as the use of latent spaces, have little effect on task performance.
We show how this phenomenon is related to exploration and how some of the lower-scoring models on standard benchmarks will perform the same as the best-performing models when trained on the same training data.
arXiv Detail & Related papers (2020-12-08T18:03:21Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - ALEX: Active Learning based Enhancement of a Model's Explainability [34.26945469627691]
An active learning (AL) algorithm seeks to construct an effective classifier with a minimal number of labeled examples in a bootstrapping manner.
In the era of data-driven learning, this is an important research direction to pursue.
This paper describes our work-in-progress towards developing an AL selection function that in addition to model effectiveness also seeks to improve on the interpretability of a model during the bootstrapping steps.
arXiv Detail & Related papers (2020-09-02T07:15:39Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
We propose an auxiliary training objective that improves the generalization capabilities of neural networks.
We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task.
Models trained with this technique demonstrate improved performance on out-of-distribution test sets.
arXiv Detail & Related papers (2020-04-20T02:47:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.