ALEX: Active Learning based Enhancement of a Model's Explainability
- URL: http://arxiv.org/abs/2009.00859v1
- Date: Wed, 2 Sep 2020 07:15:39 GMT
- Title: ALEX: Active Learning based Enhancement of a Model's Explainability
- Authors: Ishani Mondal and Debasis Ganguly
- Abstract summary: An active learning (AL) algorithm seeks to construct an effective classifier with a minimal number of labeled examples in a bootstrapping manner.
In the era of data-driven learning, this is an important research direction to pursue.
This paper describes our work-in-progress towards developing an AL selection function that in addition to model effectiveness also seeks to improve on the interpretability of a model during the bootstrapping steps.
- Score: 34.26945469627691
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An active learning (AL) algorithm seeks to construct an effective classifier
with a minimal number of labeled examples in a bootstrapping manner. While
standard AL heuristics, such as selecting those points for annotation for which
a classification model yields least confident predictions, there has been no
empirical investigation to see if these heuristics lead to models that are more
interpretable to humans. In the era of data-driven learning, this is an
important research direction to pursue. This paper describes our
work-in-progress towards developing an AL selection function that in addition
to model effectiveness also seeks to improve on the interpretability of a model
during the bootstrapping steps. Concretely speaking, our proposed selection
function trains an `explainer' model in addition to the classifier model, and
favours those instances where a different part of the data is used, on an
average, to explain the predicted class. Initial experiments exhibited
encouraging trends in showing that such a heuristic can lead to developing more
effective and more explainable end-to-end data-driven classifiers.
Related papers
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
We propose a Supervised Score-based Model (SSM) which can be viewed as a gradient boosting algorithm combining score matching.
We provide a theoretical analysis of learning and sampling for SSM to balance inference time and prediction accuracy.
Our model outperforms existing models in both accuracy and inference time.
arXiv Detail & Related papers (2024-11-02T07:06:53Z) - Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Data Shapley in One Training Run [88.59484417202454]
Data Shapley provides a principled framework for attributing data's contribution within machine learning contexts.
Existing approaches require re-training models on different data subsets, which is computationally intensive.
This paper introduces In-Run Data Shapley, which addresses these limitations by offering scalable data attribution for a target model of interest.
arXiv Detail & Related papers (2024-06-16T17:09:24Z) - IGANN Sparse: Bridging Sparsity and Interpretability with Non-linear Insight [4.010646933005848]
IGANN Sparse is a novel machine learning model from the family of generalized additive models.
It promotes sparsity through a non-linear feature selection process during training.
This ensures interpretability through improved model sparsity without sacrificing predictive performance.
arXiv Detail & Related papers (2024-03-17T22:44:36Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - Optimizing Active Learning for Low Annotation Budgets [6.753808772846254]
In deep learning, active learning is usually implemented as an iterative process in which successive deep models are updated via fine tuning.
We tackle this issue by using an approach inspired by transfer learning.
We introduce a novel acquisition function which exploits the iterative nature of AL process to select samples in a more robust fashion.
arXiv Detail & Related papers (2022-01-18T18:53:10Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - Layer-wise Analysis of a Self-supervised Speech Representation Model [26.727775920272205]
Self-supervised learning approaches have been successful for pre-training speech representation models.
Not much has been studied about the type or extent of information encoded in the pre-trained representations themselves.
arXiv Detail & Related papers (2021-07-10T02:13:25Z) - Distilling Interpretable Models into Human-Readable Code [71.11328360614479]
Human-readability is an important and desirable standard for machine-learned model interpretability.
We propose to train interpretable models using conventional methods, and then distill them into concise, human-readable code.
We describe a piecewise-linear curve-fitting algorithm that produces high-quality results efficiently and reliably across a broad range of use cases.
arXiv Detail & Related papers (2021-01-21T01:46:36Z) - Model-specific Data Subsampling with Influence Functions [37.64859614131316]
We develop a model-specific data subsampling strategy that improves over random sampling whenever training points have varying influence.
Specifically, we leverage influence functions to guide our selection strategy, proving theoretically, and demonstrating empirically that our approach quickly selects high-quality models.
arXiv Detail & Related papers (2020-10-20T12:10:28Z) - Adversarial Infidelity Learning for Model Interpretation [43.37354056251584]
We propose a Model-agnostic Effective Efficient Direct (MEED) IFS framework for model interpretation.
Our framework mitigates concerns about sanity, shortcuts, model identifiability, and information transmission.
Our AIL mechanism can help learn the desired conditional distribution between selected features and targets.
arXiv Detail & Related papers (2020-06-09T16:27:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.