Siamese networks for Poincaré embeddings and the reconstruction of evolutionary trees
- URL: http://arxiv.org/abs/2410.07387v1
- Date: Wed, 9 Oct 2024 19:10:08 GMT
- Title: Siamese networks for Poincaré embeddings and the reconstruction of evolutionary trees
- Authors: Ciro Carvallo, Hernán Bocaccio, Gabriel B. Mindlin, Pablo Groisman,
- Abstract summary: We present a method for reconstructing evolutionary trees from high-dimensional data, with a specific application to bird song spectrograms.
Our approach combines two main components: Poincar'e embeddings for dimensionality reduction and distance computation, and the neighbor joining algorithm for tree reconstruction.
- Score: 1.5624421399300303
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a method for reconstructing evolutionary trees from high-dimensional data, with a specific application to bird song spectrograms. We address the challenge of inferring phylogenetic relationships from phenotypic traits, like vocalizations, without predefined acoustic properties. Our approach combines two main components: Poincar\'e embeddings for dimensionality reduction and distance computation, and the neighbor joining algorithm for tree reconstruction. Unlike previous work, we employ Siamese networks to learn embeddings from only leaf node samples of the latent tree. We demonstrate our method's effectiveness on both synthetic data and spectrograms from six species of finches.
Related papers
- A Novel WaveInst-based Network for Tree Trunk Structure Extraction and Pattern Analysis in Forest Inventory [2.793797265684592]
This work proposes a novel WaveInst instance segmentation framework, involving a discrete wavelet transform, to improve tree structure extraction.<n> Experimental results of the proposed model show superior performance on SynthTree43k, CaneTree100, Urban Street and our PoplarDataset.<n>The proposed method achieves a mean average precision of 49.6 and 24.3 for the structure extraction of mature and juvenile trees, respectively, surpassing the existing state-of-the-art method by 9.9.
arXiv Detail & Related papers (2025-05-03T02:19:55Z) - Variational phylogenetic inference with products over bipartitions [48.2982114295171]
We present a novel variational family based on coalescent times of a single-linkage clustering and derive a closed-form density of the resulting distribution over trees.
Our method performs inference over all of tree space, it does not require any Markov chain Monte Carlo subroutines, and our variational family is differentiable.
arXiv Detail & Related papers (2025-02-21T00:06:57Z) - PhyloGen: Language Model-Enhanced Phylogenetic Inference via Graph Structure Generation [50.80441546742053]
Phylogenetic trees elucidate evolutionary relationships among species.
Traditional Markov Chain Monte Carlo methods face slow convergence and computational burdens.
We propose PhyloGen, a novel method leveraging a pre-trained genomic language model.
arXiv Detail & Related papers (2024-12-25T08:33:05Z) - Tree-D Fusion: Simulation-Ready Tree Dataset from Single Images with Diffusion Priors [20.607290376199813]
We introduce Tree D-fusion, featuring the first collection of 600,000 environmentally aware, 3D simulation-ready tree models.
Each reconstructed 3D tree model corresponds to an image from Google's Auto Arborist dataset.
Our method distills the scores of two tree-adapted diffusion models by utilizing text prompts to specify a tree genus.
arXiv Detail & Related papers (2024-07-14T20:56:07Z) - Split-and-Fit: Learning B-Reps via Structure-Aware Voronoi Partitioning [50.684254969269546]
We introduce a novel method for acquiring boundary representations (B-Reps) of 3D CAD models.
We apply a spatial partitioning to derive a single primitive within each partition.
We show that our network, coined NVD-Net for neural Voronoi diagrams, can effectively learn Voronoi partitions for CAD models from training data.
arXiv Detail & Related papers (2024-06-07T21:07:49Z) - PhyloGFN: Phylogenetic inference with generative flow networks [57.104166650526416]
We introduce the framework of generative flow networks (GFlowNets) to tackle two core problems in phylogenetics: parsimony-based and phylogenetic inference.
Because GFlowNets are well-suited for sampling complex structures, they are a natural choice for exploring and sampling from the multimodal posterior distribution over tree topologies.
We demonstrate that our amortized posterior sampler, PhyloGFN, produces diverse and high-quality evolutionary hypotheses on real benchmark datasets.
arXiv Detail & Related papers (2023-10-12T23:46:08Z) - CherryPicker: Semantic Skeletonization and Topological Reconstruction of
Cherry Trees [3.8697834534260447]
We present CherryPicker, an automatic pipeline that reconstructs photo-metric point clouds of trees.
Our system combines several state-of-the-art algorithms to enable automatic processing for further usage in 3D-plant phenotyping applications.
arXiv Detail & Related papers (2023-04-10T16:54:05Z) - Occlusion Reasoning for Skeleton Extraction of Self-Occluded Tree
Canopies [5.368313160283353]
A tree skeleton compactly describes the topological structure and contains useful information.
Our method uses an instance segmentation network to detect visible trunk, branches, and twigs.
We show that our method outperforms baseline methods in highly occluded scenes.
arXiv Detail & Related papers (2023-01-20T01:46:07Z) - TreeMix: Compositional Constituency-based Data Augmentation for Natural
Language Understanding [56.794981024301094]
We propose a compositional data augmentation approach for natural language understanding called TreeMix.
Specifically, TreeMix leverages constituency parsing tree to decompose sentences into constituent sub-structures and the Mixup data augmentation technique to recombine them to generate new sentences.
Compared with previous approaches, TreeMix introduces greater diversity to the samples generated and encourages models to learn compositionality of NLP data.
arXiv Detail & Related papers (2022-05-12T15:25:12Z) - Intersection Regularization for Extracting Semantic Attributes [72.53481390411173]
We consider the problem of supervised classification, such that the features that the network extracts match an unseen set of semantic attributes.
For example, when learning to classify images of birds into species, we would like to observe the emergence of features that zoologists use to classify birds.
We propose training a neural network with discrete top-level activations, which is followed by a multi-layered perceptron (MLP) and a parallel decision tree.
arXiv Detail & Related papers (2021-03-22T14:32:44Z) - Visualizing hierarchies in scRNA-seq data using a density tree-biased
autoencoder [50.591267188664666]
We propose an approach for identifying a meaningful tree structure from high-dimensional scRNA-seq data.
We then introduce DTAE, a tree-biased autoencoder that emphasizes the tree structure of the data in low dimensional space.
arXiv Detail & Related papers (2021-02-11T08:48:48Z) - Robust estimation of tree structured models [0.0]
We show that it is possible to recover trees from noisy binary data up to a small equivalence class of possible trees.
We also provide a characterisation of when the Chow-Liu algorithm consistently learns the underlying tree from the noisy data.
arXiv Detail & Related papers (2021-02-10T14:58:40Z) - Tensor Decompositions in Recursive Neural Networks for Tree-Structured
Data [12.069862650316262]
We introduce two new aggregation functions to encode structural knowledge from tree-structured data.
We test them on two tree classification tasks, showing the advantage of proposed models when tree outdegree increases.
arXiv Detail & Related papers (2020-06-18T15:40:32Z) - Linguistically Driven Graph Capsule Network for Visual Question
Reasoning [153.76012414126643]
We propose a hierarchical compositional reasoning model called the "Linguistically driven Graph Capsule Network"
The compositional process is guided by the linguistic parse tree. Specifically, we bind each capsule in the lowest layer to bridge the linguistic embedding of a single word in the original question with visual evidence.
Experiments on the CLEVR dataset, CLEVR compositional generation test, and FigureQA dataset demonstrate the effectiveness and composition generalization ability of our end-to-end model.
arXiv Detail & Related papers (2020-03-23T03:34:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.