A Novel WaveInst-based Network for Tree Trunk Structure Extraction and Pattern Analysis in Forest Inventory
- URL: http://arxiv.org/abs/2505.01656v1
- Date: Sat, 03 May 2025 02:19:55 GMT
- Title: A Novel WaveInst-based Network for Tree Trunk Structure Extraction and Pattern Analysis in Forest Inventory
- Authors: Chenyang Fan, Xujie Zhu, Taige Luo, Sheng Xu, Zhulin Chen, Hongxin Yang,
- Abstract summary: This work proposes a novel WaveInst instance segmentation framework, involving a discrete wavelet transform, to improve tree structure extraction.<n> Experimental results of the proposed model show superior performance on SynthTree43k, CaneTree100, Urban Street and our PoplarDataset.<n>The proposed method achieves a mean average precision of 49.6 and 24.3 for the structure extraction of mature and juvenile trees, respectively, surpassing the existing state-of-the-art method by 9.9.
- Score: 2.793797265684592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The pattern analysis of tree structure holds significant scientific value for genetic breeding and forestry management. The current trunk and branch extraction technologies are mainly LiDAR-based or UAV-based. The former approaches obtain high-precision 3D data, but its equipment cost is high and the three-dimensional (3D) data processing is complex. The latter approaches efficiently capture canopy information, but they miss the 3-D structure of trees. In order to deal with the branch information extraction from the complex background interference and occlusion, this work proposes a novel WaveInst instance segmentation framework, involving a discrete wavelet transform, to enhance multi-scale edge information for accurately improving tree structure extraction. Experimental results of the proposed model show superior performance on SynthTree43k, CaneTree100, Urban Street and our PoplarDataset. Moreover, we present a new Phenotypic dataset PoplarDataset, which is dedicated to extract tree structure and pattern analysis from artificial forest. The proposed method achieves a mean average precision of 49.6 and 24.3 for the structure extraction of mature and juvenile trees, respectively, surpassing the existing state-of-the-art method by 9.9. Furthermore, by in tegrating the segmentation model within the regression model, we accurately achieve significant tree grown parameters, such as the location of trees, the diameter-at-breast-height of individual trees, and the plant height, from 2D images directly. This study provides a scientific and plenty of data for tree structure analysis in related to the phenotype research, offering a platform for the significant applications in precision forestry, ecological monitoring, and intelligent breeding.
Related papers
- Hierarchical Quantized Diffusion Based Tree Generation Method for Hierarchical Representation and Lineage Analysis [49.00783841494125]
HDTree captures tree relationships within a hierarchical latent space using a unified hierarchical codebook and quantized diffusion processes.<n> HDTree's effectiveness is demonstrated through comparisons on both general-purpose and single-cell datasets.<n>These contributions provide a new tool for hierarchical lineage analysis, enabling more accurate and efficient modeling of cellular differentiation paths.
arXiv Detail & Related papers (2025-06-29T15:19:13Z) - A Unified Graph-based Framework for Scalable 3D Tree Reconstruction and Non-Destructive Biomass Estimation from Point Clouds [8.821870725779071]
Estimating forest above-ground biomass (AGB) is crucial for assessing carbon storage and supporting sustainable forest management.<n> Quantitative Structural Model (QSM) offers a non-destructive approach to AGB estimation through 3D tree structural reconstruction.<n>This study presents a novel unified framework that enables end-to-end processing of large-scale point clouds.
arXiv Detail & Related papers (2025-06-18T15:55:47Z) - Learning Decision Trees as Amortized Structure Inference [59.65621207449269]
We propose a hybrid amortized structure inference approach to learn predictive decision tree ensembles given data.<n>We show that our approach, DT-GFN, outperforms state-of-the-art decision tree and deep learning methods on standard classification benchmarks.
arXiv Detail & Related papers (2025-03-10T07:05:07Z) - PhyloGen: Language Model-Enhanced Phylogenetic Inference via Graph Structure Generation [50.80441546742053]
Phylogenetic trees elucidate evolutionary relationships among species.<n>Traditional Markov Chain Monte Carlo methods face slow convergence and computational burdens.<n>We propose PhyloGen, a novel method leveraging a pre-trained genomic language model.
arXiv Detail & Related papers (2024-12-25T08:33:05Z) - Tree Species Classification using Machine Learning and 3D Tomographic SAR -- a case study in Northern Europe [0.0]
Tree species classification plays an important role in nature conservation, forest inventories, forest management, and the protection of endangered species.
In this study, we employed TomoSense, a 3D tomographic dataset, which utilizes a stack of single-look complex (SLC) images.
arXiv Detail & Related papers (2024-11-19T22:25:26Z) - BranchPoseNet: Characterizing tree branching with a deep learning-based pose estimation approach [0.0]
This paper presents an automated pipeline for detecting tree whorls in proximally laser scanning data using a pose-estimation deep learning model.
Accurate whorl detection provides valuable insights into tree growth patterns, wood quality, and offers potential for use as a biometric marker to track trees throughout the forestry value chain.
arXiv Detail & Related papers (2024-09-23T07:10:11Z) - Forecasting with Hyper-Trees [50.72190208487953]
Hyper-Trees are designed to learn the parameters of time series models.
By relating the parameters of a target time series model to features, Hyper-Trees also address the issue of parameter non-stationarity.
In this novel approach, the trees first generate informative representations from the input features, which a shallow network then maps to the target model parameters.
arXiv Detail & Related papers (2024-05-13T15:22:15Z) - Hierarchical clustering with dot products recovers hidden tree structure [53.68551192799585]
In this paper we offer a new perspective on the well established agglomerative clustering algorithm, focusing on recovery of hierarchical structure.
We recommend a simple variant of the standard algorithm, in which clusters are merged by maximum average dot product and not, for example, by minimum distance or within-cluster variance.
We demonstrate that the tree output by this algorithm provides a bona fide estimate of generative hierarchical structure in data, under a generic probabilistic graphical model.
arXiv Detail & Related papers (2023-05-24T11:05:12Z) - Occlusion Reasoning for Skeleton Extraction of Self-Occluded Tree
Canopies [5.368313160283353]
A tree skeleton compactly describes the topological structure and contains useful information.
Our method uses an instance segmentation network to detect visible trunk, branches, and twigs.
We show that our method outperforms baseline methods in highly occluded scenes.
arXiv Detail & Related papers (2023-01-20T01:46:07Z) - Tree Reconstruction using Topology Optimisation [0.685316573653194]
We present a general method for extracting the branch structure of trees from point cloud data.
We discuss the benefits and drawbacks of this novel approach to tree structure reconstruction.
Our method generates detailed and accurate tree structures in most cases.
arXiv Detail & Related papers (2022-05-26T07:08:32Z) - Approach for modeling single branches of meadow orchard trees with 3D
point clouds [0.0]
The cultivation of orchard meadows provides an ecological benefit for biodiversity, which is significantly higher than in intensively cultivated orchards.
The goal of this research is to create a tree model to automatically determine possible pruning points for stand-alone trees within meadows.
arXiv Detail & Related papers (2021-04-12T08:25:27Z) - Visualizing hierarchies in scRNA-seq data using a density tree-biased
autoencoder [50.591267188664666]
We propose an approach for identifying a meaningful tree structure from high-dimensional scRNA-seq data.
We then introduce DTAE, a tree-biased autoencoder that emphasizes the tree structure of the data in low dimensional space.
arXiv Detail & Related papers (2021-02-11T08:48:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.