論文の概要: LLM Embeddings Improve Test-time Adaptation to Tabular $Y|X$-Shifts
- arxiv url: http://arxiv.org/abs/2410.07395v1
- Date: Wed, 9 Oct 2024 19:46:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 20:47:00.230325
- Title: LLM Embeddings Improve Test-time Adaptation to Tabular $Y|X$-Shifts
- Title(参考訳): LLM Embeddingsは、タブラル$Y|X$-Shiftsへのテスト時間適応を改善した
- Authors: Yibo Zeng, Jiashuo Liu, Henry Lam, Hongseok Namkoong,
- Abstract要約: 完全に新しく未知の領域に一般化することは不可能である。
ラベル付き例が少なくても,対象領域に適応しやすいモデルについて検討する。
- 参考スコア(独自算出の注目度): 19.449812954886983
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For tabular datasets, the change in the relationship between the label and covariates ($Y|X$-shifts) is common due to missing variables (a.k.a. confounders). Since it is impossible to generalize to a completely new and unknown domain, we study models that are easy to adapt to the target domain even with few labeled examples. We focus on building more informative representations of tabular data that can mitigate $Y|X$-shifts, and propose to leverage the prior world knowledge in LLMs by serializing (write down) the tabular data to encode it. We find LLM embeddings alone provide inconsistent improvements in robustness, but models trained on them can be well adapted/finetuned to the target domain even using 32 labeled observations. Our finding is based on a comprehensive and systematic study consisting of 7650 source-target pairs and benchmark against 261,000 model configurations trained by 22 algorithms. Our observation holds when ablating the size of accessible target data and different adaptation strategies. The code is available at https://github.com/namkoong-lab/LLM-Tabular-Shifts.
- Abstract(参考訳): 表形式のデータセットでは、ラベルと共変量(Y|X$-shifts)の関係の変化は、変数の欠如(すなわち、共同設立者)によって一般的である。
完全に新しい未知の領域に一般化することは不可能であるため、ラベル付き例が少なくても対象領域に適応しやすいモデルを研究する。
我々は, 表データのより情報に富む表現の構築に焦点をあて, 表データのシリアライズ(書き下し)により LLM における先行世界知識を活用することを提案する。
LLM埋め込みだけではロバスト性に一貫性のない改善をもたらすが、トレーニングされたモデルは32個のラベル付き観測を用いても対象領域に適合・微細化することができる。
我々の発見は、7650のソースターゲットペアと、22のアルゴリズムでトレーニングされた261,000のモデル構成に対するベンチマークからなる総合的かつ体系的な研究に基づいている。
我々の観察は、アクセス可能なターゲットデータのサイズと異なる適応戦略を非難するときに成り立つ。
コードはhttps://github.com/namkoong-lab/LLM-Tabular-Shiftsで公開されている。
関連論文リスト
- Probing the Robustness of Theory of Mind in Large Language Models [6.7932860553262415]
LLMにおけるToM探索のための68タスクの新しいデータセットを提案する。
データセットとデータセットを用いた4つのSotAオープンソースLLMのToM性能の評価(Kosinski, 2023)。
エージェントが環境における自動状態変化の知識を持っているという認識を必要とするタスクにおいて、全てのLLMが不整合性を示す傾向がみられた。
論文 参考訳(メタデータ) (2024-10-08T18:13:27Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
本稿では,適応推論グラフ展開(DARG)によるLCMの動的評価を導入し,複雑性と多様性を制御した現在のベンチマークを動的に拡張する。
具体的には、まず現在のベンチマークでデータポイントの推論グラフを抽出し、それから推論グラフを摂動させて新しいテストデータを生成する。
このような新しく生成されたテストサンプルは、元のベンチマークと同様の言語的多様性を維持しながら、複雑さのレベルが異なる可能性がある。
論文 参考訳(メタデータ) (2024-06-25T04:27:53Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
異なるタスクシナリオのモデルアライメントを改善するために,不確実性認識学習(UAL)を提案する。
トレーニングのラベルの平滑化値を個々のサンプルの不確実性に応じて適応的に設定する。
広く使われているベンチマーク実験では、我々のUALは標準教師あり微調整よりも著しく優れています。
論文 参考訳(メタデータ) (2024-06-07T11:37:45Z) - Elephants Never Forget: Memorization and Learning of Tabular Data in Large Language Models [21.10890310571397]
大規模言語モデル (LLM) は様々なタスクに適用できるが、データ汚染と記憶の重大な問題はしばしば誇張される。
この研究は、トレーニング中に言語モデルがデータセットを見たかどうかを評価するためのさまざまなテクニックを導入している。
次に、トレーニング中に見られたデータセット上でのLLMの数発の学習性能と、トレーニング後にリリースされたデータセットのパフォーマンスを比較した。
論文 参考訳(メタデータ) (2024-04-09T10:58:21Z) - Simple and Scalable Strategies to Continually Pre-train Large Language Models [20.643648785602462]
大規模言語モデル(LLM)は、数十億のトークンで定期的に事前訓練されるが、新しいデータが利用可能になると、プロセスを再開する。
学習率のリウォーミング、LR再計算、過去のデータのリプレイをシンプルかつスケーラブルに組み合わせることで、スクラッチから完全に再学習する性能に匹敵することを示す。
論文 参考訳(メタデータ) (2024-03-13T17:58:57Z) - VLKEB: A Large Vision-Language Model Knowledge Editing Benchmark [53.091690659399234]
大規模言語モデル(LLM)の知識編集は注目されている。
3つのメトリクス(信頼性、局所性、一般性)からなる既存のLVLM編集ベンチマークは、合成された評価画像の品質が不足している。
我々は、新しいLarge $textbfV$ision-$textbfL$anguage Modelを構築するために、より信頼性の高いデータ収集手法を使用します。
論文 参考訳(メタデータ) (2024-03-12T06:16:33Z) - Test-Time Self-Adaptive Small Language Models for Question Answering [63.91013329169796]
ラベルのないテストデータのみを用いて、より小さな自己適応型LMの能力を示し、検討する。
提案した自己適応戦略は,ベンチマークQAデータセットの大幅な性能向上を示す。
論文 参考訳(メタデータ) (2023-10-20T06:49:32Z) - Table Meets LLM: Can Large Language Models Understand Structured Table Data? A Benchmark and Empirical Study [44.39031420687302]
大規模言語モデル(LLM)は、自然言語(NL)に関連する課題を解決するために、数ショットの推論器として魅力的になってきている。
LLMの構造的理解能力を評価するためのベンチマークを設計して,これを理解しようと試みる。
重要な値や範囲識別など,効率的な構造的プロンプトのための$textitself-augmentation$を提案する。
論文 参考訳(メタデータ) (2023-05-22T14:23:46Z) - You can't pick your neighbors, or can you? When and how to rely on
retrieval in the $k$NN-LM [65.74934004876914]
Retrieval-enhanced Language Model (LM) は、大規模な外部データストアから取得したテキストにそれらの予測を条件付ける。
そのようなアプローチの1つ、$k$NN-LMは、既存のLMの予測を$k$-nearest近くのモデルの出力と補間する。
本研究では,2つの英語モデルデータセットに対するアプローチの有効性を実証的に測定する。
論文 参考訳(メタデータ) (2022-10-28T02:57:40Z) - How to distribute data across tasks for meta-learning? [59.608652082495624]
タスクごとのデータポイントの最適な数は予算に依存しますが、それは大きな予算のためのユニークな一定の値に収束します。
この結果から,データ収集の簡便かつ効率的な手順が示唆された。
論文 参考訳(メタデータ) (2021-03-15T15:38:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。