論文の概要: NeRF-Accelerated Ecological Monitoring in Mixed-Evergreen Redwood Forest
- arxiv url: http://arxiv.org/abs/2410.07418v1
- Date: Fri, 11 Oct 2024 03:33:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 20:37:14.216273
- Title: NeRF-Accelerated Ecological Monitoring in Mixed-Evergreen Redwood Forest
- Title(参考訳): レッドウッド混交林におけるNRF加速生態モニタリング
- Authors: Adam Korycki, Cory Yeaton, Gregory S. Gilbert, Colleen Josephson, Steve McGuire,
- Abstract要約: 混合常緑樹林における幹径推定を目的としたMLSとNeRF林の復元の比較を行った。
凸ハルモデルを用いたDBH推定法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Forest mapping provides critical observational data needed to understand the dynamics of forest environments. Notably, tree diameter at breast height (DBH) is a metric used to estimate forest biomass and carbon dioxide (CO$_2$) sequestration. Manual methods of forest mapping are labor intensive and time consuming, a bottleneck for large-scale mapping efforts. Automated mapping relies on acquiring dense forest reconstructions, typically in the form of point clouds. Terrestrial laser scanning (TLS) and mobile laser scanning (MLS) generate point clouds using expensive LiDAR sensing, and have been used successfully to estimate tree diameter. Neural radiance fields (NeRFs) are an emergent technology enabling photorealistic, vision-based reconstruction by training a neural network on a sparse set of input views. In this paper, we present a comparison of MLS and NeRF forest reconstructions for the purpose of trunk diameter estimation in a mixed-evergreen Redwood forest. In addition, we propose an improved DBH-estimation method using convex-hull modeling. Using this approach, we achieved 1.68 cm RMSE, which consistently outperformed standard cylinder modeling approaches. Our code contributions and forest datasets are freely available at https://github.com/harelab-ucsc/RedwoodNeRF.
- Abstract(参考訳): 森林マッピングは、森林環境の動態を理解するために必要な重要な観測データを提供する。
特に、乳房の高さにおける樹径(DBH)は、森林バイオマスと二酸化炭素(CO$_2$)の隔離を推定するために用いられる指標である。
森林マッピングのマニュアル手法は労働集約的かつ時間を要するものであり、大規模な地図作成のボトルネックとなっている。
自動マッピングは、通常点雲の形で、密集した森林の復元に頼っている。
地上レーザースキャン(TLS)と移動レーザースキャン(MLS)は高価なLiDARセンシングを用いて点雲を生成し、木径の推定に成功している。
ニューラルレイディアンスフィールド(NeRF)は、入力ビューのスパースセットでニューラルネットワークをトレーニングすることで、フォトリアリスティックで視覚に基づく再構築を可能にする創発的技術である。
本稿では,混交常緑樹林における幹径推定を目的としたMLSとNeRF林の復元の比較を行った。
さらに,コンベックス・ハルモデルを用いたDBH推定法を提案する。
このアプローチを用いて1.68cmのRMSEを達成し、標準シリンダーモデリング手法を一貫して上回った。
コードコントリビューションとフォレストデータセットはhttps://github.com/harelab-ucsc/RedwoodNeRF.comで無償公開しています。
関連論文リスト
- Comparative Analysis of Novel View Synthesis and Photogrammetry for 3D Forest Stand Reconstruction and extraction of individual tree parameters [2.153174198957389]
光度測定は一般的に森林の景観の再構築に使われるが、低効率や低品質といった課題に直面している。
NeRFは、天蓋領域ではよいが、視野が限られている地上領域ではエラーが発生する可能性がある。
3DGS法は胸の高さ(DBH)の精度に影響を及ぼすスペーサー点雲を生成する。
論文 参考訳(メタデータ) (2024-10-08T07:53:21Z) - Forecasting with Hyper-Trees [50.72190208487953]
Hyper-Treesは時系列モデルのパラメータを学習するために設計されている。
対象とする時系列モデルのパラメータを特徴に関連付けることで、Hyper-Treesはパラメータ非定常性の問題にも対処する。
この新しいアプローチでは、木はまず入力特徴から情報表現を生成し、浅いネットワークはターゲットモデルパラメータにマップする。
論文 参考訳(メタデータ) (2024-05-13T15:22:15Z) - Vision Transformers, a new approach for high-resolution and large-scale
mapping of canopy heights [50.52704854147297]
分類(離散化)と連続損失関数を最適化した新しい視覚変換器(ViT)モデルを提案する。
このモデルは、従来使用されていた畳み込みベースのアプローチ(ConvNet)よりも、連続損失関数のみで最適化された精度が向上する。
論文 参考訳(メタデータ) (2023-04-22T22:39:03Z) - Very high resolution canopy height maps from RGB imagery using
self-supervised vision transformer and convolutional decoder trained on
Aerial Lidar [14.07306593230776]
本稿では,複数の非国家の管轄区域で同時に作成される最初の高分解能天蓋の高さマップについて述べる。
地図は、2017年から2020年にかけて、マクサー画像に基づいて訓練された自己教師モデルから特徴を抽出することによって生成される。
また、GEDI観測に基づいて訓練された畳み込みネットワークを用いた後処理のステップも導入する。
論文 参考訳(メタデータ) (2023-04-14T15:52:57Z) - A Novel Semisupervised Contrastive Regression Framework for Forest
Inventory Mapping with Multisensor Satellite Data [5.652290685410878]
本研究では,連続する森林変数の壁面間マッピングのための新しい半教師付き回帰フレームワークを開発する。
このフレームワークは、Copernicus Sentinel-1とSentinel-2の画像を用いて、ボレアル林のサイトで実証されている。
達成された予測精度は、バニラUNetや従来の回帰モデルよりも優れている。
論文 参考訳(メタデータ) (2022-12-01T03:26:02Z) - CLONeR: Camera-Lidar Fusion for Occupancy Grid-aided Neural
Representations [77.90883737693325]
本稿では,スパース入力センサビューから観測される大規模な屋外運転シーンをモデル化することで,NeRFを大幅に改善するCLONeRを提案する。
これは、NeRFフレームワーク内の占有率と色学習を、それぞれLiDARとカメラデータを用いてトレーニングされた個別のMulti-Layer Perceptron(MLP)に分離することで実現される。
さらに,NeRFモデルと平行に3D Occupancy Grid Maps(OGM)を構築する手法を提案し,この占有グリッドを利用して距離空間のレンダリングのために線に沿った点のサンプリングを改善する。
論文 参考訳(メタデータ) (2022-09-02T17:44:50Z) - Neuroevolution-based Classifiers for Deforestation Detection in Tropical
Forests [62.997667081978825]
森林破壊や荒廃により、毎年何百万ヘクタールもの熱帯林が失われる。
監視・森林破壊検知プログラムは、犯罪者の予防・処罰のための公共政策に加えて、使用されている。
本稿では,熱帯林の森林破壊検出作業におけるニューロ進化技術(NEAT)に基づくパターン分類器の利用を提案する。
論文 参考訳(メタデータ) (2022-08-23T16:04:12Z) - Information fusion approach for biomass estimation in a plateau
mountainous forest using a synergistic system comprising UAS-based digital
camera and LiDAR [9.944631732226657]
本研究の目的は,高原山岳森林保護区の地上バイオマス(AGB)の定量化である。
我々はDAP(Digital Aero Photogrammetry)を用いて,速度,空間分解能,低コストの独特な利点を生かした。
マルチスペクトル画像から得られたCHMとスペクトル特性に基づいて,関心領域のAGBを相当のコスト効率で推定,マッピングした。
論文 参考訳(メタデータ) (2022-04-14T04:04:59Z) - Deep Learning Based 3D Point Cloud Regression for Estimating Forest
Biomass [15.956463815168034]
森林バイオマス資源の知識とその開発は、効果的な気候変動対策を実施する上で重要である。
空中LiDARを用いたリモートセンシングは、大規模に植生のバイオマスを測定するのに利用できる。
本稿では,3次元LiDAR点雲データから,木材の体積,地上バイオマス(AGB)および炭素を直接推定する深層学習システムを提案する。
論文 参考訳(メタデータ) (2021-12-21T16:26:13Z) - Country-wide Retrieval of Forest Structure From Optical and SAR
Satellite Imagery With Bayesian Deep Learning [74.94436509364554]
本研究では,10mの解像度で森林構造変数を高密度に推定するベイズ深層学習手法を提案する。
本手法は,Sentinel-2光画像とSentinel-1合成開口レーダ画像を5種類の森林構造変数のマップに変換する。
ノルウェーを横断する41の空中レーザー走査ミッションの基準データに基づいて、我々のモデルを訓練し、テストする。
論文 参考訳(メタデータ) (2021-11-25T16:21:28Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
この論文は、いくつかの重要な側面で深い森林のアイデアをさらに拡張します。
我々は、ノードがハードバイナリ決定ではなく、確率的ルーティング決定、すなわちソフトルーティングを行う確率的ツリーを採用する。
MNISTデータセットの実験は、私たちの力のある深部森林が[1]、[3]よりも優れたまたは匹敵するパフォーマンスを達成できることを示しています。
論文 参考訳(メタデータ) (2020-12-29T18:05:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。